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Abstract

A central part of many algorithms for mining asso-
ciation rules in large data sets is a procedure that finds
so called frequent itemsets. This paper proposes a new
approach to finding frequent itemsets. The approach
reduces a number of passes through an input data set
and generalises a number of strategies proposed so far.
The idea is to analyse a variable number n of itemset
lattice levels in p scans through an input data set. It is
shown that for certain values of parameters (n,p) this
method provides more flexible utilisation of fast access
transient memory and faster elimination of itemsets
with low support factor. The paper presents the results
of experiments conducted to find how performance of
association rule mining algorithm depends on the val-
ues of parameters (n,p).

Keywords: Data Mining, Association Rules, Fre-
quent Itemsets, Algorithms

1 Introduction

The algorithms for mining association rules in large
data sets attracted a lot of attention in the recent
years. The original problem [1] was to find the corre-
lations among the sales of different products from the
analysis of large set of supermarket data. Association
rule is an implication that determines co-occurrence
of the objects in a large set of so called transactions,
e.g. customer baskets, collections of measurements,
etc. At present, the research works on association rules
are motivated by an extensive range of application ar-
eas such as banking, manufacturing, health care, and
telecommunications. Association rule discovery tech-
niques are used to detect suspicious credit card transac-
tions, money-laundering activities [9] in banking and fi-
nancial businesses. The same techniques are applied in
manufacturing, controlling, and scheduling of technical
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production processes [5]. The other application areas
include health care [7] and management of telecommu-
nication networks [6].

The discovery of association rules is typically done in
two steps [1]. Analysis of experimental data performed
in the first step provides a minimal set of objects (item-
sets) such that frequency of their co-occurrence is above
a given threshold (minimum support). These itemsets
are called as frequent itemsets. The second step uses
the frequent itemsets to construct the association rules.
It has been shown that computational complexity of
the problem is buried in the searching for a minimal
set of frequent itemsets in the first step. Generation
of association rules from frequent itemsets has a linear
complexity and it has no impact on the overall perfor-
mance.

A number of algorithms finding frequent itemsets
in large data sets have been already proposed. Ma-
jority of them counts one category of itemsets, e.g.
all k£ element itemsets in one pass through an input
data set. For instance, Apriori algorithm [2] counts
n element itemsets in the m-th pass through a data
set. All frequent itemsets identified in the n-th pass
are used to generate the hypothetically frequent item-
sets (candidate itemsets) for verification in the next
pass. Frequent itemsets obtained from the n-th pass
and being the subsets of frequent itemsets identified
in the next pass are pruned. The process continues
until no new frequent itemsets are found. Sampling
for frequent itemsets algorithm [10] extracts a random
sample from a data set and finds all frequent itemsets
there. Next, it tries to verify the results on a complete
data set. A top-down approach [11] applies the max-
imum clique generation algorithm to find a ceiling of
the minimal set of frequent itemsets. Next, the sub-
sets of all frequent itemsets included in a ceiling are
counted in each pass through a data set. DIC algo-
rithm [3] stops counting itemsets as soon as there is
no chance for an itemset to be frequent. Each elim-



inated itemset is immediately replaced with another
itemset. A new technique recently proposed in [4] uses
FP-tree to store compressed crucial information about
frequent itemsets. This technique needs a huge volume
of transient memory if a number of frequent itemsets is
too large. Partition algorithm [8] transforms an input
data set from a horizontal layout to a vertical layout
and uses a list intersection technique to identify the
frequent itemsets.

An approach presented in this paper considers a hy-
pothetical perfect algorithm capable of guessing and
verifying all frequent itemsets in one scan through an
input data set. An input to the perfect algorithm is
a set of frequent and non-frequent itemsets called as a
perfect guess. A perfect guess includes both frequent
and non-frequent itemsets because for each frequent
itemset found we have to show that none of its su-
persets is frequent. For example, if a set of all items
is {4, B,C} and {A}, {B}, {C}, {A, B} are frequent
itemsets then to verify that {{A, B}, {C}} is the mini-
mal set of frequent itemsets we have to check in a data
set that {4, B}, {C} are frequent and that {A,C},
{B, C} are not frequent. As the result a perfect guess
consists of the candidate itemsets from many levels of
itemset lattice. The quality of association rule min-
ing algorithms is determined by two factors. The first
one is a number of passes through an input data set.
The other one is a number of comparisons of candidate
itemsets with input transactions in order to find which
candidate itemsets should be counted. The perfect al-
gorithm minimises both parameters. It needs to read
an input data set only once and it needs to perform
the smallest number of comparisons to verify a perfect
guess. For instance, elimination of any candidate item-
set in order to reduce a number of comparisons results
with a different solution.

We are aware that implementation of the perfect al-
gorithm is unrealistic because probability of making a
correct guess in a large data set is very low. Our idea
is to treat a concept of perfect algorithm in a way sim-
ilar to how a concept of ”absolute zero temperature”
is treated in physics. It is going to be the ultimate
goal, i.e. a point which cannot be achieved and in the
same moment a point that can be used to measure the
quality of the realistic algorithms.

One of the objectives is to construct an algorithm
that makes a good guess, i.e. a guess that is not per-
fect and in the same moment it does not contain too
many errors. To make a good guess we need to get
some information about the properties of an input data
set. It leads to a strategy where a data set is read
once, the statistics are collected and used to guess all
2,3,...,n — th element candidate itemsets. Next, a
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guessed set of candidate itemsets is minimised and ex-
tended by a minimal set of non-frequent itemsets that
have to be tested to prove its correctness. At the end
an input data set is scanned for the second time to
verify a guess. Due to a fact that initial guess is not
perfect some of the items that suppose to be frequent
appear not to be frequent and vice versa. A set of mis-
takes detected during verification is used to generate a
new set of candidate itemsets that should be verified
again. The third scan through a data sets eliminates
all mistakes and provides the final solution for a range
of 2,3,...,n — th element itemsets. Then, the same
procedure is repeated for the next range of itemsets.
To implement such an algorithm we need a procedure
capable of guessing frequent itemsets from the statis-
tics collected in the first scan of input data set. To our
best knowledge none of the algorithms proposed so far
has such properties.

A problem with the approach sketched above is that
we make more errors in guessing of itemsets that con-
tain more items. This is because the errors done at the
lower levels of itemset lattice multiple themselves very
fast at the higher levels. A number of error has an im-
portant impact on performance because each of them
requires the additional comparisons of candidate item-
sets with transactions from an input data set. These
observations lead to a parameterised version of the al-
gorithm. In order to decrease a number of errors at
the higher levels, we parameterise a range of itemsets
for which a guess is done. On the other hand, smaller
guessing range increases a number of passes through
an input data set. The parameterised (n,p) algorithm
finds all frequent itemsets from a range of n levels in
itemset lattice in p passes (n >= p) through an input
data set. A classical Apriori algorithm is a special case
of (n,p) algorithm where n = p = 1, i.e. the candidate
itemsets from one level of itemset lattice are verified
in one pass. An interesting question is what combina-
tions of n and p values provide the best performance.
Intuitions are such that as a ratio n/p increases we have
to perform more unnecessary comparisons of candidate
itemsets with transactions from an input data set. On
the other hand, if ratio n/p decreases then we perform
less unnecessary comparisons and in the same moment
we read an input data set more frequently.

The rest of this paper is organised as follows. A
detail of (n,p) algorithm, including guessing, verifying
procedures, and an example, is given in Section 2. Ex-
periments of (n,p) algorithm is demonstrated in Sec-
tion 3. A summary and a discussion of future research
are provided in Section 4.



2 Finding frequent itemsets

This section presents a parameterised (n,p) algo-
rithm for mining frequent itemsets. It also contains
the description of guessing and verification of candi-
date itemsets.

2.1 Problem description

Let I = {i1,%2,...,%m} be a set of literals, called
items. Let D be a set of transactions, where each
transaction ¢t € D consists of transaction identifier tid
and set of items I; C I. We assume that the items
are kept ordered within each transaction. We call an
itemset that contains k items as k-itemset.

Association rule is an expression X = Y where X,
Y are itemsets and X,Y C T and XNY = (. The
support for an itemset is defined as a fraction of all
transactions that includes X UY. The confidence of a
rule X = Y is defined as (X UY)/X. We accept a
rule X = Y as true if its confidence exceeds a given
threshold value.

A candidate itemset is an itemset selected for veri-
fication of its support in a data set. An itemset is a
positive candidate itemset when it is assumed (guessed)
to be frequent. Otherwise, it is called as a negative
candidate itemset. Both positive and negative candi-
date itemsets are verified in single pass through a data
set. A candidate itemset becomes a frequent itemset
when verification shows its support level above a given
threshold value. A remaining candidate itemsetsis can-
didates verified in another scan.

In the rest of the paper candidate k-itemsets are de-
noted by Cy, positive (negative) candidate k-itemsets
are denoted C; (Cy ), remaining candidates are de-
noted by C7, and frequent k-itemsets are denoted by
L.

2.2 The algorithm

The algorithm starts from an initial pass through an
input data set in order to find all frequent 1-itemsets
(L1) and to collect the statistics of the total number
of 1-, 2-, ..., n-element transactions that contain the
elements from L;. The statistics are stored in table
T, e.g. see Table 1. Then, the initial value of current
level k is set to 2 and initial result is set to L;. If
Li_1 is not empty, a procedure guess_candidates is
called to guess the candidate itemsets from the next
n levels. The procedure returns a set C of positive
and negative candidate itemsets. The elements of
C are verified in an input data set by a procedure
verify _candidates. The procedure finds all errors
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done by guess_candidates in one pass through an
input data set. Then, it corrects the errors and finds
the solution for levels from & to k+n — 1 in the second
pass through the data set. A minimal set of frequent
frequent itemsets found is added to the result set.
The value of k is then increased by n. These steps are
repeated until L;_q is empty. A pseudo-code of the
algorithm is given below

n := number of lattice levels traversed at a time;

sup := minimum support;

Results := 0;

generate Li;

generate statistics table T';

Result := Result ULy;

k=2

while Ly_; # 0 do
guess_candidates(T, Ly, ty, t, n, k, C);
verify_candidates(C, sup, n, k);
Result := Result U {Lg, Ly+1,---, Le+n—1};
k:=k + n;

end;

2.8 Guessing candidate itemsets

The procedure guess_candidates finds all candi-
date itemsets from a range of levels from k to k+n—1
that accordingly to our guessing method would ver-
ify as frequent itemsets. The procedure takes on input
statistics table 7', frequency thresholds (¢;), m-element
transaction threshold (#;), set Ly_1 of frequent item-
sets, level k it starts from, and number n of levels to
be considered.

Guessing starts at level k. The procedure uses apri-
ori_gen function proposed in [2] to generate a set Cj
of candidate k-itemsets from L;_;. Then, it uses the
statistics from table T to decide which candidate item-
sets in C}, are positive (C;) and which one are negative
(Cy)- A frequency threshold is applied to all transac-
tions that consists of k& or more elements. The output
of this step is a set of single items whose frequencies
satisfy the frequency threshold. If any itemsets in Cj
are subset of the output set, then we put them into
a set of positive candidate k-itemsets. We repeat this
step until it reaches transaction length m. Finally, if
there are any k-itemsets in C}, which are not in a set of
positive candidate k-itemsets then they are appended
to a set of negative candidate k-itemsets.

In the next step apriori_gen is applied to C; to
form set of C(x+1). This time we consider from (k+1)-
element to m-element transactions. The sets of C("'

E+1)
and C(_,c+1), are then generated. Next, C(’;_‘_l) is used

to form C(r42). This procedure is repeated until we



reach level (k +n — 1). Finally, all subsets of itemsets
in O(+,C +n1) at lower levels are pruned.

For example, assume that procedure
guess_candidates is called with the following
parameters: item frequency threshold equals to

80%, m-element transaction threshold equals to five
(5-element transaction), number of levels to traverse
equals to three, starting level equals to two, and table
statistics table T' as follows.

freq. according to tr. length
Ttem g 1. [ 4ls. | 5 els. | Total freq
A 3 2 2 7
B 4 2 3 9
C 3 2 3 9
D 1 1 1 3
E 3 1 3 7
F 1 0 3 4
no. of
m-els trs. 5 2 3 10

Table 1: Sample statistics in table T

Suppose we are at level k, and the apriori_gen
function, generated Cy = {AB, AC, AD, AE, AF, BC,
BD,BE,BF,CD,CE,CF,DE,DF,EF} As there
is no k-element transactions in table 1, we consider
(k+1)-element transaction. 80% of the total number
of (k+1)-transactions, i.e. five, is four. The output set
of single items whose frequencies satisfy the frequency
threshold is {B}. Consequently, there is no itemsets
in Cy which is subset of this set. Next, applying the
frequency threshold to transaction length 4, and this
time the output set is {ABC}. As there are some
itemsets in C}, are subset of {ABCY}, they are put into
a set of positive candidates. We repeat this step in the
transaction length 5. Finally, set of C,‘: and C} are as
follows:

Ci = {AB,AC, AE, AF,BC,BE, BF,CE,CF,EF}
w ={AD,BD,CD,DE,DF}

We use two thresholds to guess the candidate item-
sets: item’s frequency threshold and m-element trans-
action threshold. The accuracy of candidate guessing
is determined by both of them. If a value of item’s
frequency threshold is high then accuracy of candidate
guessing will be high as well. However, we will get
less frequent itemsets from the first scan because we
have less positive candidates. Consequently, the ex-
tra database passes may be needed to determine large
number of remaining candidate itemsets. On the other
hand, if the value of item frequency threshold is low,
we have too many errors. In addition, the higher value
m-element transaction threshold is, more errors of can-
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didate itemsets are generated.
2.4 Verification of candidate itemsets

Verification of candidate itemsets includes verifica-
tion of candidates provided by guess_candidates pro-
cedure and elimination of errors done at the guessing
stage. The procedure verify_candidates takes on in-
put a set C with positive and negative candidate item-
sets, minimum support (sup), starting level (k), and
number of lattice levels traversed (n).

In the first stage, the procedure scans an input data
set and finds all positive candidate itemsets which ap-
pear to be negative and vice versa. Due to errors in
guessing it has to construct a new set of candidate item-
sets and verify them once more. If certain C;" appears
to be not frequent then all its subsets from levels k
to (k + j — 1) are generated. Then, they are trimmed
by supersets which appear to be frequent. Similarly,
if certain Cj" appears to be not frequent then all its
supersets from levels 5 + 1 to £+ n — 1 are generated
and trimmed by the verified frequent itemsets. In the
next stage, the confirmation procedure scans an input
set for the second time and verifies the final solution.
Although the (n, p) algorithm moves n levels at a time,
the total number of candidate itemsets is more or less
the same as other algorithms moving level by level. It
is because itemsets in lower levels will not be subsets
of any candidates in higher levels, both in positive and
negative candidate itemsets.

2.5 Example

This subsection describes a sample execution of
(n,p) algorithm for n = 3, p = 2, and the statistics
given in Table 1. Suppose that frequency threshold
ty = 80%, m-element transaction threshold ¢; = 5, and
the sets of positive and negative candidates at level 2
are:

Cf = {AB AC AE AF BC BE BF CE CF EF}
C; = {AD BD CD DE DF}

Using only set of Cj and apply the thresholds to

Table 1, set of C5 and Cy3 are as follows:
Cf = {ABC ABE ABF ACE ACF AEF BCE BCF
BEF CEF}
Cy =1{}
The procedure is repeated at level 4.
C} = {ABCE ABCF ABEF ACEF BCEF}
Ci =1{}

Set of final positive and negative candidate itemsets
after pruning all subsets of positive superset are:
C; = {ABCE ABCF ABEF ACEF BCEF}

Cf =0 ={}



C; = {AD BD CD DE DF}
Cy =Cy ={}

The database are scanned to verify these candidate
itemsets. With 20% of minimum support, partial fre-
quent 2-, 3-, 4-itemsets are as follows:

L, = {BD CD DE}
Ls = {}
Ly = {ABCE ABCF ABEF ACEF BCEF}

Then set of remaining candidate itemsets are gener-
ated,
Cf =1}
CE = {BCD BDE CDE}
CR = {BCDE BCDF}

Verifying sets of remaining candidate by scanning
the database, frequent 2-, 3-, and 4-itemsets are gener-
ated.

L, = {AB AC AE AF BC BD BE BF CD CE CF DE
EF}

L; = {ABC ABE ABF ACE ACF AEF BCD BCE
BCF BDE BEF CEF}

L, = {ABCE ABCF ABEF ACEF BCEF}

By using frequent 4-itemsets, candidate itemsets of
another three levels are formed. As there is only one
5-itemset, there is no need to form sets of candidate 6-,
T-itemsets.

Cs = {ABCEF}

Scanning the database, frequent 5-itemsets are, fi-
nally, determined.

Ls = {ABCEF}

3 Experimental Results

To assess the performance of (n,p) algorithm, we
conducted several experiments on different data sets.
The algorithm was implemented in C language and
we tested it on Unix platform. The experiments used
the synthetic data sets generated by IBM’s synthetic
data generator from Quest project. We considered
the following parameters: number of transactions in
a database (ntrans), average transaction length (tl),
number of patterns (np), and a minimum support
(sup).

We have tried a range of number of transactions,
average transaction length, and a number of patterns.
As we expected, the results show that for n # 1
and p # 1 our approach provides better results than
Apriori algorithm (n = 1 and p = 1) both in terms of
execution time and the total number of database scans.
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Parameters no. database scans
(n,2)
) mp ) sup | Apr P T T T g 10 | 12
10 10 20 9161414131 - -
12 10 20 111714144 3 -
14 10 20 13716144 4
20| 100 | 10 85143 }-]| - -

Table 2: A comparison of no. database scans

between Apriori and (n,p) algorithm

Table 2 shows a number of database scans of (n,p)
algorithm compared with Apriori in different distribu-
tions of data sets.
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Figure 1. Performance of Apriori and (n,p)
with t1=10 np=10 sup=20%

Figure 1 presents the results for different numbers
of transactions and fixed number of candidate item-
sets are. We compared Apriori with (n,p) algorithm
by moving several levels in two passes. With small size
of databases, the performance of Apriori and (n,p) al-
gorithm is approximately the same. When an input
data set is larger, the performance of (n,p) algorithm
is much better than Apriori. It is because a number of
database scans of (n,p) algorithm is less than in Apri-
ori. In addition, three to four levels are the optimal
movings which are the best performance of this data
set. We also conducted the other experiments with dif-
ferent data distributions, as shown in Figures 2 and 3.
When the data distribution is more scattered, the exe-
cution time of (n, p) algorithm is not much different to
Apriori. It is because both algorithms have to deter-
mine many candidate itemsets which are not frequent.

Figure 4 shows the performance of (n,p) algorithm
with the increasing of the ratio of n/p. We parame-
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Figure 2. Performance of Apriori and (n,p) al-
gorithm with ti=14 np=10 sup=20%

terised the algorithm by moving one level in one pass
of data set and moving more than one levels in three
passes. It showed that when a ratio increases, the per-
formance decreases due to the itemset guessing with
more elements, which resulted in getting more errors.

Finally, we illustrated performance of (n,p) algo-
rithm by varying number of database passes (p) and
fixing number of levels moving a time (n = 8), as shown
in Figure 5, to confirm that we should not move too
many levels in a few database scans, as well as should
not move one level in one database pass.

4 Summary and future works

This work proposes a new approach to finding fre-
quent itemsets in mining association rules. The im-
portant contribution of our method is the reduction of
number of scans through a data set. The main idea of
our new algorithm are to guess candidate itemsets in
each level of itemset lattice starting from level k up to
k +mn —1 and to verify such candidate itemsets. To
have a good guess, some statistical data from input
data are corrected during the database is scanned. By
using such information, the candidate itemsets are gen-
erated. Next, these candidate itemsets are verified by
scanning the database. If there are some errors from
the guessing, another scan through a database will be
needed to eliminate such errors and produce the final
solution of frequent itemsets. Experiments based on
different data sets have been conducted to evaluate per-
formance of the algorithm.
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Figure 3. Performance of Apriori and (n,p) al-
gorithm with tI=20 np=100 sup=10%

As the central point of the algorithm is precise guess-
ing of candidate itemsets the future works include sig-
nificant improvements in collecting statistics and ac-
curacy of guessing. It is necessary to measure what
are the costs of getting more complex statistics in the
first pass through an input data set and what benefits
may be achieved from such statistics in the remaining
part of the algorithm. It is also necessary to improve
the internal data structures of the algorithm in order
to eliminate an impact of inefficient searching methods
on the overall performance.
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