Asking What No One Has Asked Before: Using Phrase
Similarities To Generate Synthetic Web Search Queries

Marius Pasca
Google Inc.
1600 Amphitheatre Parkway
Mountain View, California
mars @ google.com

ABSTRACT

This paper introduces a method for automatically inferring mean-
ingful, not-yet-submitted queries. The inferred queries fill some of
the knowledge gaps between documents, on one hand, and known
(i.e., already-submitted) queries, on the other hand. Thus, the in-
ferred queries expand query logs and increase their coverage. New
candidate queries are over-generated from known queries via phrase
similarity data, then filtered against the set of known queries. The
accuracy of the generated queries is computed using open-domain
questions from standard question answering evaluation sets. Over
the ranked lists of questions inferred for each of the evaluation
questions, the precision reaches 0.9 at rank 50. The set of inferred
queries is more than twice as large as the set of input queries.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval; 1.2.6 [Artificial Intelligence]: Learn-
ing; 1.2.7 [Artificial Intelligence]: Natural Language Processing

General Terms

Algorithms, Experimentation

Keywords

Query generation, synthetic queries, query templates, distributional
similarities, Web search queries, query logs

1. INTRODUCTION

Background: Queries submitted collectively by Web search users
indirectly convey human knowledge. Given the query “how to
replace a clutch on a honda civic”, car enthusiasts would easily
recognize that a particular car has parts that sometimes need re-
placement. Similarly, music aficionados would quickly interpret a
query “lyrics of yesterday beatles” to refer to the lyrics of a partic-
ular song performed by a particular band. But not all queries lend
themselves to easy interpretation. Indeed, queries take many forms,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’11, October 24-28, 2011, Glasgow, Scotland, UK.

Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1347

varying from relatively infrequent grammatically-structured, pre-
cise natural-language queries, to frequent noisy, underspecified,
keyword-based queries. Throughout this continuum, the desire for
better understanding of search queries is pervasive [7, 5], given its
benefits towards better search results.

Motivation: If knowledge is generally prominent, users will even-
tually ask about it, especially as the number of users and the breadth
of the available knowledge increase. But at a given time, an ever-
growing document collection like the Web may capture more knowl-
edge than has been asked about by search queries. Generating
all meaningful queries that fill the knowledge gaps between doc-
uments, on one hand, and known (i.e., already-submitted) queries,
on the other hand, is a daunting task. Manually compiling a com-
prehensive set of questions about a document or passage requires
deep understanding of the document. Fortunately, some of the
knowledge gaps are easier to fill than others. If a clutch is a replace-
ment part on a honda civic and on a truck, it might be a replacement
part on similar items including a motorcycle or toyota yaris, even
if the query “how to replace a clutch on a toyota yaris” has not
been submitted yet. Equally, if there are lyrics of yesterday and hey
Jjude, there may be lyrics of lovely rita and here comes the sun, even
if “lyrics of here comes the sun beatles” is not in the input set of
queries.

Since inferred queries are new requests for knowledge derived
from known requests for knowledge, they are useful in knowledge
acquisition and access. For example, the development and training
of specialized modules, such as those answering natural-language
questions, benefit from the availability of additional inferred ques-
tions. In information extraction, methods operating over query logs
rather than document collections benefit from a larger number of
input queries, which increases the coverage of the extracted data.
In Web search interfaces, inferred queries enrich the sets of queries
displayed as potential completions based on what Web search users
have typed so far, reducing the time to search result.
Contributions: We introduce a method for generating open-ended,
not-yet submitted queries. The method aggregates known queries
into query templates (e.g., “lyrics of x beatles”) associated with
known phrase fillers (e.g., x—{yesterday, hey jude}). The known
phrase fillers of each query template are then expanded into new
candidate phrase fillers. Queries generated in previous work have
particular form (i.e., natural-language questions) and often require
extensive linguistic processing of documents [14, 4]. In contrast,
our method automatically generates new queries based on query
analysis alone, as opposed to individual document analysis. This
has the potential advantages of scalability and robustness with arbi-
trary, inherently-noisy queries. Furthermore, the method produces
open-ended queries whose form resembles that of known queries,
whether keyword-based or expressed in natural language. When

applied to a large set of anonymized search queries, the method
generates more than twice as many new queries as there are input
queries. The accuracy of the generated queries is computed over
ranked lists of new phrase fillers generated for question templates
corresponding to open-domain questions from standard question
answering evaluation sets [18]. Precision over the evaluation set
of question templates, for which new phrase fillers are generated,
reaches 0.93 at rank 10 and 0.90 at rank 50.

2. GENERATING NEW QUERIES

Definitions: A query Q is a sequence of tokens Q=[q: q2 ..
4N,], submitted as a search query by Web users.

A query template T is a generalization of a set of queries that
share a common prefix [q1 g2 .. qi—1] and a common postfix [q;41
.- qng]- The template is obtained by replacing the variable infix [q;
qi+1 .- q;] from each query, with a generic template filler x: T=[q:
q2 - Qi—1 * qj+1.- qnp]- The template filler is associated with
the set of infixes, or phrase fillers, from the queries that contributed
to it. Each of the contributing queries can be reconstructed from
the query template.

A template signature T’s is a generalization of a set of query tem-
plates that, if their token sequences are reduced to token sets (i.e.,
ignoring the relative order of the tokens), become the same. Some
tokens that belong to a fixed, global set of tokens deemed irrelevant
may be discarded in the process. The template signature is asso-
ciated with the query templates that contribute to it. Using these
definitions, the processing stages of our method for generating new
queries are described in the following.

Aggregation into Query Templates: Our method takes as input a
set of Web search queries. The sequence of tokens available in each
query is split into all combinations of triples of a prefix, non-empty
infix and postfix. For example, “lyrics of hey jude beatles” is split
into lyrics, of hey jude, beatles; lyrics of, hey jude, beatles; lyrics
of, hey, jude beatles; etc. Resulting triples that share a common
prefix and postfix are aggregated into a query template, where the
input infixes are the known phrase fillers of the template:

lyrics of come together beatles

lyrics of hey jude beatles

lyrics of yesterday beatles

qi -.

“lyrics of x beatles”

where the template filler x corresponds to the set of known phrase
fillers, i.e., infixes from the input queries: {yesterday, hey jude,
come together}. An input query may contribute to the creation of
multiple query templates, via different infixes. For example, an-
other template created from “lyrics of yesterday beatles” is “lyrics
of yesterday "

lyrics of yesterday toni braxton

lyrics of yesterday leona lewis

lyrics of yesterday beatles

“lyrics of yesterday %"

Generation of Candidate Phrase Fillers: In order to generate new
queries, we expand the set of known phrase fillers into additional
candidate phrases that may fill the query template. The expansion
of phrase fillers is similar to the task of instance set expansion [15,
20], with a few differences. First, the instance set (i.e., the known
phrases) to be expanded is derived automatically from noisy search
queries, rather than provided manually as a clean set of seed in-
stances. This is a crucial difference, since the choice of the instance
set to be expanded has been shown to greatly affect the outcome and
quality of the expansion, even with “correct”, manually selected
seeds [15]. Second, the set of known phrases varies in size across
templates, from very small to very large. Third, it is not necessarily
semantically coherent since it can span disjoint, unrelated classes:
it includes first and exxon valdez, for the template “when was the x

1348

oil spill”; and fragile x syndrome and men and women, for “what
is the life expectancy for =”. Fourth, the expansion needs to be
performed at large scale, i.e., individually for all query templates
created from the set of input queries.

As a prerequisite to generating candidate phrase fillers, distribu-

tionally similar phrases [11, 12, 15] and their scores are collected
in advance. Let D.S(K;) be the list of most distributionally similar
phrases of a known phrase filler K; from a query template 7". Any
phrase U from DS(K;) is considered as a candidate phrase filler
U of the respective query template. The score of U relative to the
entire set of known fillers { K; }2_, (and therefore, relative to T') is:
B Zf\;l DSscore(U, K;) {
= 5 M
where DSscore(U, K;) is the distributional similarity score [10]
between U and Kj;. For each template 7', its candidate phrase fillers
U are ranked in decreasing order of their scores. Known phrase
fillers of 1" are discarded from the resulting list of candidate phrase
fillers of 7.
Filtering of Candidate Phrase Fillers: Candidate phrase fillers
generated via distributional similarities are similar to known phrases
only statically. To also take the context of the query template into
account, the candidates are filtered using only the input queries:

1) A canonical, keyword-based template signature 7’ is created
from each template 7. The process discards tokens from 7" that ei-
ther are stop words, or are marked by a part-of-speech tagger [2] as
prepositions (of, for), determiners (the, an), auxiliary verbs (have,
were), or typical initial words in questions (who, how, where). The
tokens not discarded are stemmed and ordered lexicographically in
Ts. The same template signature may be shared by a large number
of query templates:

Sim(U,T)

“lyrics of % beatles” “lyrics for x by the beatles”
“lyrics the beatles *” “x by beatles lyrics”
“beatles lyrics x” “lyrics x by the beatles”

“x beatl lyric”

2) The list of candidate phrases of 7' is filtered, by retaining only
known phrases of some other templates 7" that share the same
template signature T's as 7. For example, the unfiltered list of
candidate phrases for the template “lyrics of = beatles” contains,
among other phrases: somehting, earlier today, last friday, gather
together, eleanor rigby, two weeks ago, lucy in the sky with dia-
monds, strawberry fields forever, something else, here comes the
sun, lovely rita. Out of these phrases, somehting, earlier today,
last friday, gather together, two weeks ago, something else are not
among the known phrase fillers of any of the templates with the
same signature as “lyrics of x beatles”. Therefore, these phrases
are discarded from the candidate phrase fillers of “lyrics of x beat-
les”. In comparison, the query templates “lyrics for x by the beat-
les” and “beatles lyrics x” have, among their known phrase fillers,
the candidate phrases eleanor rigby and lucy in the sky with dia-
monds; and here comes the sun and lovely rita respectively. There-
fore, these phrases are retained as candidate fillers of “lyrics of x
beatles” after filtering.

A side effect of the filtering of candidate phrases is to effectively
intersect vocabularies of candidate phrase fillers generated from
documents, with vocabularies of known phrase fillers from queries.
Indeed, candidate phrase fillers, generated from documents via dis-
tributionally similarities, are required to appear as known phrase
fillers in other query templates of the same template signature.

The relative ranking of candidate phrases from the list of inferred
unfiltered phrase fillers (before filtering) is preserved in the list of
inferred filtered phrase fillers (after filtering). Each filtered phrase
filler inferred for a query template corresponds to a new query, gen-
erated by filling the phrase into the slot filler of the query template.

Question Template (Original Question)

| {Set of Known Fillers}: [Ranked List of Inferred Fillers] |

what is the boiling point of x (What is the boiling point of water?)

{ch3br, caesium, engine oil, orange juice, gas,..}: [toluene, benzene,
formic acid, acetonitrile, meoh, phenol, heptane,..]

when was the x oil spill (When was the Exxon Valdez Oil spill?)

{first, last, valdez, exxon valdez}: [past, torrey canyon, amoco cadiz, sea
empress, braer, argo merchant, ixtoc,..]

human body?)

what is the longest % in the human body (What is the longest bone in the

{organ, nerve, neuron, bone, cell,..}: [tendon, axon, bones]

American to win the Nobel Prize in literature?)

who was the first african american to win the * (Who was the first African

{academy award, super bowl, medal of honor,..}: [tony award, grammy,
grammy award, heisman, emmy, pulitzer, nobel,..]

how many home runs did = hit (How many home runs did Babe Ruth hit?)

{joe dimaggio, henry aaron, hank aaron, josh gibson, sammy sosa,..}:
[albert pujols, chipper jones, ken griffey jr,..]

what x helps prevent osteoporosis (What mineral helps prevent osteoporosis?)

(-]

how fast is = absorbed (How fast is alcohol absorbed?)

{birth control, sugar, thc, whey protein,..}: [aspirin, proteins]

what is the life expectancy for x (What is the life expectancy for crickets)

{lupus, fragile x syndrome, men and women,..}: [copd, epilepsy, sar-
coidosis, schizophrenia, hemochromatosis, sle,..]

get married in South Carolina?)

how old do you have to be to get married in x (How old do you have to be to

{france, connecticut, kentucky, kansas,..}: [united states, us,..]

where did * grow up (Where did Golda Meir grow up?)

{sarah palin, lamar odom, jimmy buffet}: [drew barrymore, dakota fan-
ning, keyshia cole, beyonce knowles, fall out boy,..]

Table 1: Sample of phrase fillers present in (Known) or generated (Inferred) queries, for a selected subset of the evaluation set of 457
TREC question templates. The method infers phrase fillers for 246 out of the 475 question templates

3. EVALUATION

3.1 Experimental Setting

Data Sources: The experiments rely on a random sample of around
100 million fully-anonymized queries in English submitted by Web
users to Google in 2010. Each query is accompanied by its fre-
quency of occurrence in the query logs.

A phrase similarity repository is available, which is derived fol-
lowing [12, 15] from unstructured text available within a sample of
around 200 million documents in English. The repository provides
data for each of around 1 million phrases that occur as full-length
queries in the input query logs. It contains ranked lists of the top
200 phrases computed to be the most distributionally similar, for
each phrase. For example, the top distributionally similar phrases
for caesium are cesium, rubidium, strontium, barium, thallium, lan-
thanum etc.

Evaluation Set of Question Templates: An evaluation set of ques-
tion templates is compiled from the factoid evaluation questions of
the TREC Question Answering track [19, 18] from 1999 through
2003. For this purpose, a random sample of 800 TREC questions is
manually inspected. The inspection of a question may result in one
of three possible outcomes. First, the question may be discarded, if
the resulting question templates would be so general that generat-
ing additional new phrases to fill it would be trivial (too easy). This
occurs for 158 of the 800 questions (e.g., for “what is the loca-
tion of lake champlain” or “what is a fuel cell”). Alternatively, the
question may be discarded, if the question is too specific to gener-
ate any new queries from its possible templates. This is the case for
139 of the 800 questions (e.g., for “what cuban dictator did fidel
castro force out of power in 1958”, “what did john hinckley do to
impress jodie foster” or “in what year did joe dimaggio compile his
56-game hitting streak”). Finally, the question may be retained and
manually converted into a question template, by changing a phrase
from the question into a slot filler. A total of 503 of the 800 ques-
tions are thus converted into 457 unique question templates. The
left part of Table 1 shows a sample of the evaluation set of question
templates, along with the questions from which they were derived.
Extraction Parameters: Any query template is created from at
least two distinct input queries, such that the slot of a template is
filled by at least 2 known phrases. To cap computational costs,
at most 10,000 candidate phrases are retained per query template,

out of the phrases generated from the set of known phrases based
on the phrase similarity repository. For each known phrase, the
200 most similar phrases available in the phrase similarity repos-
itory are considered. During the mapping of query templates into
canonical template signatures for the purpose of filtering candidate
phrases, all tokens are stemmed using the Porter stemmer [16].

3.2 Quantitative Results

Relative Coverage for Inferred Queries: For query lengths from
1 to 10 and also for all query lengths, the graphs in Figure 1 com-
pute percentages of counts of unique queries, relative to counts
of unique, original queries available in the input query logs. The
left graph is for the original queries. It captures the distribution of
unique queries over query length in the input query logs. In partic-
ular, it shows that most of the input queries contain between 2 and
4 tokens: 21.6% (2 tokens), 31.7% (3 tokens), 23.7% (4 tokens),
with an overall 100% (all tokens). The middle graph is for the sub-
set of original queries that contribute to the creation of any query
template and one of its known fillers. Because no query templates
are created from queries containing a single token, the percentage
for query length 1 is 0. The middle graph shows that many of the
original queries do contribute to the creation of query templates:
15.6% (2 tokens), 25.9% (3 tokens), 19.2% (4 tokens) of all unique
original queries. Overall, 76.7% (all tokens) of the original queries
contribute to creating query templates, which in turn generate new
queries. Since query frequency has a long tail distribution, the three
quarters of the original queries covered by our query generation
method include frequent queries as well as many rare queries.

The right graph in Figure 1 is for inferred filtered queries, which
do not include any of the original queries among them. Even af-
ter filtering, the number of inferred queries exceeds the number of
original queries at all query lengths, with the exception of query
length 2: 16.3% (2 tokens), 56.3% (3 tokens), 70.1% (4 tokens),
with an overall 224% (all tokens). Thus, the addition of the set
of inferred queries to the set of original queries more than triples
the size of the set of original queries. The relative query-count in-
crease, from original queries (left graph) to inferred queries (right
graph), is higher important for relatively longer queries: 2.4% to
9.1% (7 tokens), 1.2% to 3.4% (8 tokens), 0.6% to 1.2% (9 tokens).

As a more precision-oriented alternative to the right graph in
Figure 1, a separate experiment generates new queries from only
the top 50 (as opposed to all) inferred filtered phrase fillers per

1349

Original queries

Query templates filled with known fillers

Query templates filled with inferred filtered fillers

256.00

128.00

64.00

32.00

16.00

8.00

4.00

2.00

1.00

0.50

0.25

Percentage of original queries

0.13

0.06

256.00 256.00
5 128.00 g 5 128.00
g 64.00 S 64.00
S 32,00 — S 32,00 —
T 16.00 = |- 1600 =
B 8.00 D 8.00
S 400 - S 400
© 2.00 © 200
& 100 ™ & 100
£ 050] £ 050
o 025 _i o 025
£ 013 | | £ o013
0.06 1L = 0.06

— &t o~ o D

(all) 4

Query length (number of tokens)

— &m0~ 0 D

Query length (number of tokens)

|
1

— &t o~ D

(all) 4
(all) 4

Query length (number of tokens)

Figure 1: Number of unique queries of various lengths, shown as a percentage of the total number of unique original queries.
Computed for the original query set (left graph), the query set obtained by filling each known phrase filler in its query template
(middle graph), and the query set obtained by filling each inferred filtered candidate filler in its query template (right graph)

5 080 — 5 080

= Wmmm#" =

= =] T

3 070 - 3 070 P B
5} 5}

£ 060 2 060

g g

E E

= 050 = 050

5 040 5 040

k| k|

% 030 % 030

& &

£ 020 £ 0.20

g 0 200 400 600 800 1000 2 0 200 400 600 800 1000
@] &)

Number of known fillers per template Min number of known fillers per template

2 0.80 2 0.80
3 2

=] =

z 0.70 z 0.70

3 060 3 0.60

U=} =}

?é 0.50 ?g 0.50

£ 040 < 040

£ 0 & 040 P

D P —
;ﬂ 0.30 ‘ ;ﬂ 0.30

£ 020 —J 5 020

é 0 200 400 600 800 1000 é 0 200 400 600 800 1000

Number of known fillers per template Min number of known fillers per template

Figure 2: Coverage relative to known phrase fillers, for inferred
unfiltered (upper graphs) or inferred filtered (lower graphs)
phrase fillers, over templates containing a particular number
(left graphs) or at least a particular number (right graphs) of
known phrase fillers. Computed from the top 50000 inferred
phrase fillers per template. For this computation only, known
phrase fillers are not removed from the lists of inferred phrase
fillers

query template. With this setting, the addition of the set of inferred
queries almost doubles the size of the set of original queries, with
96% more queries.

Relative Coverage for Inferred Phrase Fillers: Because it is un-
feasible to manually compile the exhaustive sets of phrases that
can fill arbitrary query templates, we compute relative instead of
absolute coverage. Figure 2 illustrates the coverage over all query
templates, computed as the percentage of known fillers that occur
among inferred fillers. Only for this computation, known fillers
are not discarded from the ranked lists of at most 10,000 candidate
fillers generated per query template. This is roughly equivalent to
assessing to what extent candidate fillers generated from known
fillers can recover known fillers that were to be missing. The left
graphs of the figure show the relative coverage over query tem-

1350

plates, when the absolute number of known phrase fillers per tem-
plate increases. The right graphs correspond to a smoother version,
in which the minimum number of known phrase fillers per template
increases. The upper and lower graphs in the figure correspond to
the coverage for inferred fillers before filtering and after filtering re-
spectively. Naturally, filtering reduces relative coverage of known
fillers, as shown by comparing the upper graphs against the respec-
tive lower graphs. Some of the known fillers (e.g., men and women)
are not semantically similar to, and therefore may not be recovered
from the similar phrases of, the other known fillers (e.g., lupus)
of the template (e.g., “what is the life expectancy for x”). This
particularly affects query templates with few known fillers. There-
fore, relative coverage in the upper graphs of Figure 2 is initially
lower, but increases quickly as the (minimum) number of known
phrase fillers for the template increases. For all graphs, coverage
decreases slowly as the number of known fillers per template in-
creases. The decrease is partly artificial, since an increase in the
number of known fillers will cause more of the recovered known
fillers to be ranked beyond the top 10,000 candidate fillers retained
per query template.

Considering not all templates but just the evaluation set of 457
query templates, new queries are inferred (after filtering) for 246 of
457, i.e., 53% of the evaluation set. The average ratio of inferred
phrase fillers vs. known phrase fillers is 290% or 159%, when com-
puted over the subset of 246 or all 457 query templates respectively.
Forward Coverage for Inferred Queries: An additional experi-
ment investigates the coverage of inferred queries, relative to queries
submitted only later (“forward”) in time. Concretely, forward cov-
erage of inferred queries is measured relative to a separate “for-
ward” sample of queries, used only for the purpose of this particu-
lar experiment. The forward sample consists in 100 million fully-
anonymized queries in English, submitted collectively by Web users
around 6 months later than the “main” query set (i.e., from which
inferred queries are generated). Out of the forward query set, 55.6%
of queries appear in the main query set. Conversely, almost half
(44.4%) of the forward queries are new queries. More importantly,
8.6% of the queries in the forward query set are among the queries
inferred from the main query set submitted 6 months earlier. In
other words, 19.3% of the new queries in the forward query set
can be inferred in advance from the main query set. Note that
these queries represent only 3.5% of the set of inferred queries.
Therefore, inferred queries capture queries submitted later in time,
and also capture many other not-yet-submitted queries. If only
the top 50 queries inferred per template are considered, the for-
ward coverage numbers become 5.7% (instead of 8.6%) of forward

Label

Examples of Question Template: Phrase Filler |

wrong what is the life expectancy for x: chinese crested
when was the x oil spill: chernobyl nuclear

misspelled | when did x enter the union: illionis
when was the * oil spill: exon valdez

okay what is the longest x in the human body: bones
how fast is = absorbed: proteins

correct what is the longest % in the human body: tendon
what is the boiling point of . toluene

Table 2: Correctness labels for the manual assessment of new
phrases generated for query templates

Correctness Percentage of Ranked Phrase Fillers
@5 @10 @20 @50
Gu| Gr|| Gu| Gr| Gu| Gr| Gu| Gr
wrong || 7.97| 2.30(| 8.82| 2.53| 9.73| 3.21|[11.89| 3.75
misspelled || 5.28| 1.43|[5.24| 1.68| 5.16| 1.68| 5.08| 1.63
okay || 1.63| 6.22|| 1.50| 7.27| 2.02| 7.52{ 2.32| 8.38
correct || 85.12 {90.05 || 84.44 | 88.52 | 83.09 [87.59|| 80.71 | 86.24

Table 3: Comparative percentages of phrase fillers inferred for
the evaluation question templates, whose correctness is deemed
to be of a particular type from Table 2. Shown as an aver-
age over the subset of 246 question templates for which some
phrase fillers were generated (Gy=inferred unfiltered candi-
date fillers; G r=inferred filtered candidate fillers)

queries, and 12.8% (instead of 19.3%) of forward queries that are
new queries.

3.3 Quality of Inferred Queries

Evaluation Procedure: The evaluation focuses on the assessment
of accuracy of the ranked list of new phrases generated for each
query template. Each phrase is manually assigned a correctness
label within its respective query template, as shown in Table 2. A
phrase is correct, if it is a meaningful filler of the template; okay,
if it refers to a concept that would be a meaningful filler but as
it stands grammatically disagrees with the template; misspelled, if
it is a meaningful filler but is misspelled; or wrong, if it is not a
meaningful filler.

Accuracy: Two experimental runs are evaluated, where new queries
are generated by filling in a generated candidate phrase into its
query template. In run Gy, the ranked lists of generated candi-
date fillers are unfiltered. Comparatively, in run G, the ranked
lists of candidate fillers are automatically filtered.

The right part of the earlier Table 1 illustrates the ranked lists
of filtered phrase fillers generated in run G, for a sample of the
evaluation question templates. For example, the template “what is
the boiling point of x” has caesium, orange juice and gas among
its known phrase fillers. The top fillers generated for it are toluene
and benzene, which correspond to inferring the not-yet-submitted
queries “what is the boiling point of toluene” and “what is the
boiling point of benzene” respectively. No known fillers or inferred
fillers are available for evaluation question templates such as “what
* helps prevent osteoporosis”.

Table 3 illustrates how many of the phrase fillers are marked with
each of the correctness labels from Table 2, at various ranks in the
ranked lists of phrase fillers. Table 3 shows how, relative to Gy,
run G reduces the counts of phrase fillers deemed as wrong and
misspelled, but in doing so increases the number of phrase fillers
deemed okay. More importantly, larger percentages of phrase fillers
are deemed as correct for Gr than for Gy, across all ranks, e.g.,
around 90% vs. 85% at rank 5.

1351

Inferred Query | Via Query Template

audio quality of ipod touch 3g
dress code at albert hall

fly from paris to zagreb
formatting decimal to string in ¢
how is the weather in key west in
august

how to replace battery on imac
max speed of corvette zrl

pet supply stores in milwaukee
what is the national flag of france
when did reese witherspoon win
the oscar

where to buy t mobile phones
without contract

* of ipod touch 3g

dress code at *

fly from paris to x

* decimal to string in ¢

how is the weather in x in august

how to replace battery on
« of corvette zrl

* stores in milwaukee
what is the x of france
when did x win the oscar

where to buy = phones without
contract

Table 4: Examples of queries inferred, after filtering (run Gr),
from the input set of known queries

Table 4 shows a small sample of inferred filtered queries, derived

via arbitrary query templates (i.e., templates that are not restricted
to the evaluation set of question templates). Existing methods that
extract instance attributes from queries can derive additional at-
tributes from inferred queries (e.g., audio quality for ipod touch
3g from the inferred query “audio quality of ipod touch 3g”, or
max speed for corvette zrl from the inferred query “max speed of
corvette zrl”), which may not be otherwise derived from the set of
known queries.
Discussion: Although unfiltered candidate fillers have good qual-
ity for many query templates, their filtering is useful. Meaningful
fillers of a query template should be similar to the known fillers
not only statically, but also in the context of the query template.
Unfiltered candidate fillers satisfy only the first requirement: their
computation relies only on the set of known fillers, and ignores the
context introduced by the remainder of the query template. Intu-
itively, unfiltered candidates will have lower quality, whenever the
context introduces additional constraints that are more difficult to
derive by analyzing solely the set of known fillers. For example,
both templates “what year was x born” and “what dress size was
*” take person names as fillers. However, the presence of dress
size in the latter restricts its acceptable fillers mostly to feminine
names - an important constraint that may be difficult to capture
automatically just from the known fillers. Indeed, the top 10 un-
filtered candidate phrases generated for the latter template include
cary grant and james dean, which do not correspond to meaning-
ful generated queries. The phenomenon is even more visible for
templates like “when was % ’s founded” and “who directed the
film x”. Both templates have a moderate number of known fillers,
many of which happen to look like first names of people: wendy,
tiffany, for the former; and jack, anand, for the latter. As a result,
the unfiltered generated phrase fillers are skewed towards people
first names, most of which are irrelevant for the respective tem-
plates. Although imperfect, filtering takes advantage of constraints
imposed on the candidate phrases by the presence of the same key-
words in other queries, to discard irrelevant candidate phrases.

4. RELATED WORK

Our method infers new queries by exploiting a particular type
of relatedness between sets of known queries, on one hand; and
new queries generated from the query template corresponding to
those known queries, on the other hand. In this light, an inferred
query is related to a known query, in that the former can be inferred
from the latter by replacing a phrase with another phrase from the

same semantic class, as approximated via phrase similarities. Un-
like previous work in the related area of computing related queries
for a given query, our method does not require the availability of
user feedback, in the form of query sessions or user-specific infor-
mation [13, 3] or clicks on search results [3]. It does not require
large amounts of click information or other labeled data, and does
not bias the generated queries towards typical substitutions made
by Web searchers to their queries [8]. Moreover, it attempts to gen-
erate new queries that are meaningful by themselves, in addition to
being useful in some internal system module or task. Queries are
also aggregated into query templates in [17], in order to compute
related queries for a given query. Our mapping of multiple query
templates into the same template signature is a simpler alternative
to previous work on bridging longer questions with their equivalent
shorter queries [9, 6].

Other previous work shares the intuition that submitted search
queries are influenced by and indicative of various semantic rela-
tions holding among full-length queries or query tokens. Semantic
relations are untyped, similarity-based relations from query logs
in [1], and hold among full-length queries. Untyped relations can
also be identified among query tokens, for the purpose of query re-
formulation [21]. Among the classes of query substitutions defined
in [8], our generation of new queries from known queries fits under
the class of approximate rewriting, i.e., substitutions that replace
part of the query with an alternative from the same category.

5. CONCLUSION

In this paper, redundancy within Web search queries allows for
the generation of not-yet-submitted queries that correspond to mean-
ingful user information needs. Redundancy is used in two ways:
through different queries that specify the same properties or same
relations of similar phrases; and through queries that have differ-
ent degrees of verbosity (from natural-language to keyword-based)
but essentially use the same keywords. The analysis of query logs
is limited to queries considered in isolation from one another; no
search-result clicks or query sessions are needed.

Because queries inferred in this paper resemble existing queries,
and existing queries tend to be limited in length, arbitrarily com-
plex questions are unlikely to occur among inferred queries. On-
going work explores the generation of new queries via double-slot
(“what did * do to impress x”), as opposed to single-slot, query
templates; the identification of new queries that should be discarded
because the inferred phrase filler does not agree syntactically with
the remainder of the query.

Acknowledgments

We would like to thank Lev Finkelstein, for suggestions and tech-
nical support; and Yangbo Zhu and Leonid Velikovich, for access
to distributional similarity data.

6. REFERENCES

[1] R.Baeza-Yates and A. Tiberi. Extracting semantic relations from

[2

3

—

—

query logs. In Proceedings of the 13th ACM Conference on
Knowledge Discovery and Data Mining (KDD-07), pages 76-85, San
Jose, California, 2007.

T. Brants. TnT - a statistical part of speech tagger. In Proceedings of
the 6th Conference on Applied Natural Language Processing
(ANLP-00), pages 224-231, Seattle, Washington, 2000.

H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li.
Context-aware query suggestion by mining click-through and session
data. In Proceedings of the 14th ACM Conference on Knowledge
Discovery and Data Mining (KDD-08), pages 875-883, Las Vegas,
Nevada, 2008.

1352

[4]

[51

[7

—

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

M. Heilman and N. Smith. Good question! Statistical ranking for
question generation. In Proceedings of the 2010 Conference of the
North American Association for Computational Linguistics
(NAACL-HLT-10), pages 609-617, Los Angeles, California, 2010.
J. Hu, G. Wang, F. Lochovsky, J. Sun, and Z. Chen. Understanding
user’s query intent with Wikipedia. In Proceedings of the 18th World
Wide Web Conference (WWW-09), pages 471-480, Madrid, Spain,
2009.

S. Huston and B. Croft. Evaluating verbose query processing
techniques. In Proceedings of the 33rd International Conference on
Research and Development in Information Retrieval (SIGIR-10),
pages 291-298, Geneva, Switzerland, 2010.

B. Jansen, D. Booth, and A. Spink. Determining the informational,
navigational, and transactional intent of Web queries. Information
Processing and Management, 44(3):1251-1266, 2008.

R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query
substitutions. In Proceedings of the 15h World Wide Web Conference
(WWW-06), pages 387-396, Edinburgh, Scotland, 2006.

J. Lee, S. Kim, Y. Song, and H. Rim. Bridging lexical gaps between
queries and questions on large online qa collections with compact
translation models. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing (EMNLP-08),
pages 410—418, Honolulu, Hawaii, 2008.

L. Lee. Measures of distributional similarity. In Proceedings of the
37th Annual Meeting of the Association of Computational Linguistics
(ACL-99), pages 25-32, College Park, Maryland, 1999.

D. Lin and P. Pantel. Concept discovery from text. In Proceedings of
the 19th International Conference on Computational linguistics
(COLING-02), pages 1-7, Taipei, Taiwan, 2002.

D. Lin and X. Wu. Phrase clustering for discriminative learning. In
Proceedings of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL-IJCNLP-09), pages 1030-1038,
Singapore, 2009.

Q. Mei, D. Zhou, and K. Church. Query suggestion using hitting
time. In Proceedings of the 17th International Conference on
Information and Knowledge Management (CIKM-08), pages
469-477, Napa Valley, California, 2008.

R. Mitkov and L. Ha. A computer-aided environment for generating
multiple-choice test items. Natural Language Engineering,
12(2):177-194, 2006.

P. Pantel, E. Crestan, A. Borkovsky, A. Popescu, and V. Vyas.
‘Web-scale distributional similarity and entity set expansion. In
Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing (EMNLP-09), pages 938-947,
Singapore, 2009.

M. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

I. Szpektor, A. Gionis, and Y. Maarek. Improving recommendation
for long-tail queries via templates. In Proceedings of the 20th World
Wide Web Conference (WWW-11), pages 47-56, Hyderabad, India,
2011.

E. Voorhees. Overview of the trec 2003 question answering track. In
Proceedings of the 12th Text Retrieval Conference (TREC-2003),
pages 54—68, Gaithersburg, Maryland, 2003.

E. Voorhees and D. Tice. Building a question-answering test
collection. In Proceedings of the 23rd International Conference on
Research and Development in Information Retrieval (SIGIR-00),
pages 200-207, Athens, Greece, 2000.

R. Wang and W. Cohen. Automatic set instance extraction using the
Web. In Proceedings of the 47th Annual Meeting of the Association
for Computational Linguistics (ACL-IJCNLP-09), pages 441-449,
Singapore, 2009.

X. Wang and C. Zhai. Mining term association patterns from search
logs for effective query reformulation. In Proceedings of the 17th
International Conference on Information and Knowledge
Management (CIKM-08), pages 479-488, Napa Valley, California,
2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

