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ABSTRACT

Tagging has become a very common feature in Web 2.0 ap-
plications, providing a simple and effective way for users
to freely annotate resources to facilitate their discovery and
management. Subsequently, tag clouds have become popu-
lar as a summarized representation of a collection of tagged
resources. A tag cloud is typically a visualization of the
top-k most frequent tags in the underlying collection. In
this paper, we revisit tag clouds, to examine whether fre-
quency is the most suitable criterion for tag ranking. We
propose alternative tag ranking strategies, based on meth-
ods for random walk on graphs, diversification, and rank
aggregation. To enable the comparison of different tag se-
lection and ranking methods, we propose a set of evaluation
metrics that consider the use of tag clouds for search, nav-
igation and recommendations. We apply these tag ranking
methods and evaluation metrics to empirically compare al-
ternative tag clouds in a dataset obtained from Flickr, com-
prising 488,112 tagged photos organized in 451 groups, and
112,514 distinct tags.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems

General Terms

Algorithms, Measurement

Keywords
Web 2.0, Tagging, Web Resources

1. INTRODUCTION

With the abundance of content on the Web, especially
with the rapidly increasing amount of user generated content
in Web 2.0, retrieving and managing information remains
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a significant and challenging problem. Although content-
based retrieval usually performs sufficiently well for text,
such as documents or Web pages, the same does not hold
for other types of content. For example, for multimedia re-
sources or bookmarks, it has become clear that exploiting
metadata is often crucial for achieving good performance.
However, although the Semantic Web aims at annotating
Web resources to facilitate their search and management,
attempts in this direction are hindered by the significant ef-
fort required to create and maintain formal annotations, as
well as the ontologies on which they rely upon. In contrast,
tagging has emerged as a very simple, easy and effective
solution for annotations. Most Web 2.0 applications allow
users to tag resources created by themselves or others, and
exploit these tags to improve search, navigation and recom-
mendations [21].

The fact that tagging is such an easy and fast process
that any user can perform has been the main driving fac-
tor for its widespread adoption by most Social Web appli-
cations, such as Flickr, Delicious, Technorati, Facebook or
Last.fm. However, this also makes the results of the tag-
ging process very noisy. To address this problem, several
approaches have proposed methods for extracting semantics
from tags or computing the relevance of a tag to a resource in
order to improve or recommend the assignment of tags to re-
sources (e.g. [14, 12, 18, 23, 13, 7]). These approaches focus
on (re-)ranking or suggesting tags for an individual resource,
based on its content (e.g., visual features of an image), as
well as the content and tags of other similar resources.

In this paper, we consider instead the problem of selecting
and ranking tags to describe groups of tagged resources. For
example, in Flickr or Facebook, users can create albums to
organize their photos; similarly, in Last.fm, they can create
playlists containing tracks from similar artists or for specific
occasions. Such item collections can become arbitrarily large
over time. Relying on a title or a short text to describe the
group contents is not sufficient and may easily become out-
dated or reflect only the owner’s perspective. On the other
hand, listing all the contents is impractical for large collec-
tions, while selecting only a few representatives to display
may not be straightforward. When dealing with collections
of tagged resources, tag clouds have become a common way
for describing the group contents and allowing navigation.

The goal of a tag cloud is to display the most relevant and
important tags for the items in a group. In practice, tag
clouds typically display the most frequently occurring tags,
since this is both intuitive and easy to compute. Figure 1



168smm 2010 35mm 50mm art aredelafoto bay beach black blackandwhite blue bw
canada car cc chureh city clouds color colour commons creative d200 d300 d3000 d300s
45000 d60 d700 d80 d90 dawn flickr forest gente girl green gunner nawor hike niking ot
island isiancs italia italy lake landscape light london love mare mattiacatalano mounein

mrcatoz music hature night nikkor NIKON nionarie nikond200 nikond40 rikondeo
nikond90 ocean orange people » photography photoshop popoo port
portrait rain reflection robhoey rock sea Sky skyine snow stock stockphoto strada street

summer sun sunset tarragona town travel tre€ trees vacation walk war Water white
yellow

Figure 1: Example of a tag cloud from Flickr.

shows an example of a tag cloud displayed by Flickr for a
group of photos with title “This is nikon art”.

In this paper, we deal with the problem of selecting and
ranking tags for tag clouds, addressing two main questions:
(a) how effective is the strategy of ranking tags in item
collections based on their frequency, and (b) are there any
better strategies for this task? To address these questions,
we propose and examine alternative methods to select and
rank tags in groups of tagged objects, and we compare these
methods on a large real-world dataset containing groups of
tagged photos obtained from Flickr. To compare the differ-
ent methods, we measure their effectiveness in terms of a set
of proposed metrics that characterize the usefulness of a tag
cloud for search and navigation. Moreover, we measure their
accuracy for the task of recommending groups for a tagged
item, when groups are represented by different tag clouds.
The results of our evaluation show that although ranking
tags based on their frequency performs well in most cases,
even more effective rankings can be obtained using other
methods. Specifically, our contributions can be summarized
as follows:

e We formalize the problem of ranking tags to repre-
sent groups of tagged objects, and we propose dif-
ferent ranking strategies that go beyond the simple
frequency-based method.

e We propose a set of metrics to objectively and auto-
matically evaluate the effectiveness of alternative tag
clouds for a given group of objects.

e We empirically evaluate the presented tag selection
and ranking methods in terms of the described eval-
uation methodology, using a large real-world dataset
from Flickr, comprising 451 groups, 488,112 tagged
photos, and 112,514 distinct tags.

The rest of the paper is organized as follows. The next sec-
tion discusses related work. Section 3 introduces the basic
framework and notation. In Section 4, we present differ-
ent strategies for selecting and ranking tags for tag clouds.
Section 5 proposes a set of evaluation metrics that allow
to objectively compare different tag clouds for the tasks of
search, navigation and recommendations.Section 6 presents
the results of our experimental evaluation on a large col-
lection of tagged photos and groups obtained from Flickr.
Finally,Section 7 concludes the paper.

2. RELATED WORK

Due to the popularity and wide adoption of manual tag-
ging of resources in content sharing Web sites, this area has
attracted a lot of research interest. In the following, we re-
view some of the main related research efforts, including also
some related work on faceted browsing.

2.1 Tag Ranking

The most relevant work to the one presented in this pa-
per is a recent effort described in [22], which addresses the
problem of selecting tags to summarize query results. It
combines frequency and diversity to increase the coverage
of the query results. However, it does not consider other
methods such as tag co-occurrence or rank aggregation or
different variations for diversification as in this paper. In
addition, it proposes a set of metrics for evaluating differ-
ent tag clouds. Although some of these metrics are common
to our work, such as coverage and overlap, it focuses on
measures for relevance, balance and cohessiveness of results,
while we are more interested in characteristics such as selec-
tivity, navigation cost and accuracy for recommendations.

Some recent efforts have dealt with the problem of (re-)
ranking the set of tags assigned to an object. [14] focuses
specifically on images and computes a relevance score be-
tween an image and each tag assigned to it by performing a
random walk on a graph representing tag similarities. Apart
from tag co-occurrences, these similarities take into consid-
eration the content of the photos using low-level visual fea-
tures. In the same direction, [12] estimates the relevance
of a tag to an image based on its occurrence or not in visu-
ally similar images. Furthermore, extracting event and place
semantics from tags of photos has been investigated in [18].

In contrast, our goal is to select and rank tags for groups
of objects rather than each single object. However, it is in-
teresting to examine how the methods and metrics presented
in our work can be adapted for individual resources or ex-
tended to exploit semantics and content-based similarity.

2.2 Tag Recommendations

To reduce the noise and the effort in tagging, several
approaches have focused on recommending tags to users
for a given resource. In [23], tag recommendation for im-
ages is formulated as a learning problem, proposing a multi-
modality recommendation based on both tag and visual cor-
relation. [13] proposes a re-tagging scheme for images that
maintains consistency of visual and semantic similarity be-
tween tags and images. In [2], tags are propagated along
edges in a graph connecting similar documents. A graph-
based ranking algorithm is proposed in [7] for personalized
tag recommendation. When a user issues a tagging re-
quest, both the resource and the user are treated as queries,
accounting for relevance and personalization, respectively.
Then, the top ranked tags are recommended to the user.

Again, these approaches focus on recommending tags for
individual objects and they rely on content-based (visual)
similarity for relevance.

2.3 Visualization of Tag Clouds

In a different line of research, the impact of the visualiza-
tion aspects of tag clouds on the user experience has been
studied. A comparative study of several tag cloud layouts
(e.g. sequential, circular and clustered layouts) has shown
that they clearly affect task performance, and thus should
be carefully designed [15]. Another experimental evaluation
indicated that semantically clustered tag clouds can provide
improvements over random layouts in specific search tasks,
increasing also the attention towards tags in small fonts [20].
A method for displaying large-scale tag clouds using a topo-
graphical image has been proposed in [5].

Visualization and layout aspects are not considered in our



work. However, it is interesting to examine how the pro-
posed tag selection and ranking algorithms can be combined
with different tag cloud layouts. For example, a clustered
layout might be more suitable for a tag diversification al-
gorithm, while a sequential layout for a rank aggregation
method.

2.4 Faceted Browsing

Finally, our work has many commonalities with methods
for automatically selecting facets and facet-value pairs in
faceted browsing interfaces, which are also used in many ap-
plications to help users navigate through large collections of
resources [8]. Facets are attributes describing resources in
a collection. For example, typical facets for scientific pub-
lications are author, title, conference, year, etc. Each facet
may have a very large list of possible values; however, only
a few facets and facet-value pairs can be displayed in a user
interface. Thus, several works have focused on the problem
of ranking facets and facet-value pairs, going beyond the
standard frequency-based approach.

Facetedpedia [11] automatically selects and ranks facets
in wikipedia, based on a user navigation model to define the
cost of different facets. This is extended with a definition of
similarity between facets to allow the ranking of combina-
tions of facets. To make the navigation model manageable,
some simplifying assumptions are made; for example, dese-
lecting a previously selected facet is not allowed. A set of
metrics for determining which facets constitute good “navi-
gators” in RDF datasets is proposed in [17]. These include
predicate balance, which compares the sizes of the result
sets of different facet-value pairs, object cardinality, which
is the number of possible values for a facet, and predicate
frequency, which is the number of objects that have a non-
null value for a given facet. To select facets that minimize
the navigation cost in a database, [19] finds the minimum
cost decision tree that distinguishes each tuple from other
tuples based on its attributes values. This is similar, to some
extent, with our metric for selectivity. Finally, personalized
and interactive faceted search is studied in [9], focusing on
a methodology to evaluate alternative selections of facets.
A user simulation model is used to define a utility score for
alternative faceted search interfaces.

Summarizing, since tag clouds and faceted browsing in-
terfaces serve similar purposes, there are some similar ideas
underlying methods, models and metrics in both categories.
However, due to the different nature of facets, which are
structured and have the form of attribute-value pairs, those
approaches are usually not suitable or directly applicable for
tag selection and ranking.

3. TAG SELECTION FRAMEWORK

Assume a set of objects U, a set of (possibly overlapping)
groups G, and a set of tags 7. Objects are assigned to groups
according to a mapping function my : U x G — {0,1}. Sim-
ilarly, tags are assigned to objects according to a mapping
function ms : U x T — {0, 1}.

Let T'(u) denote the set of tags assigned to an object w.
Similarly, U(t) denotes the set of objects tagged with t. Typ-
ically, the latter refers to the objects within a particular
group G under consideration, but to simplify notation we
omit G since it is clear from the context.

Given a group G, the set T'(G) of all the tags related to it

is the union of the sets of tags assigned to its objects, i.e.,
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This set can be arbitrarily large, depending on the size of
the group and the number and variety of tags assigned to
its objects. Applications need to select and visualize a few
of these tags to represent a summary of the group contents.
Thus, the goal is to select a subset Tg C T'(Q) of size k (for
a given, relatively small, integer k) to describe the group. In
addition, the tags in T should be ranked, since this ranking
is typically taken into consideration when visualizing a tag
cloud. Therefore, we consider T as an ordered list of tags
{t1,t2,...,tx}. We denote the rank of a tag t in the tag
cloud T by r(t) (with the first tag having r(¢) = 0).

Let f(t) be a scoring function that assigns to each tag ¢
of a tag cloud T¢ a utility value in the interval [0,1]. We
define the overall utility value of T as

> alr(t) - f(t)
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where () is a discount function that adjusts the utility of
each tag according to its position in the cloud, e.g.:
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where the parameter 3 determines the rate of reduction.
Given a group G and an integer k, the optimal tag cloud

for G is the set T that is a subset of T'(G) with size k and
maximizes the utility function F":

®3)
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Therefore, the main question is how to specify the utility
function f, and subsequently, to maximize it. In the follow-
ing section, we propose different tag selection methods based
on different approaches for defining the utility function f for
the members of the tag cloud.

4. TAG SELECTION STRATEGIES

We consider different strategies for ranking tags to de-
scribe sets of tagged objects. In particular, we first start
with the standard frequency-based ranking, and we exam-
ine two possible extensions. Then, we present two methods
based on diversification algorithms, and finally we present a
method based on an algorithm for rank aggregation.

4.1 Based on Frequency

4.1.1 Frequency scoring

The simplest, most straightforward and most widely used
approach for selecting the contents of a tag cloud for a set
of objects is to rank tags based on their frequency, i.e., the
number of objects to which a tag is assigned. This is based
on the assumption that, if a large number of objects in the
group has been tagged with a tag ¢, then ¢ has high utility for
describing the contents of the group. Therefore, the utility
function of a tag t € T'(G) is defined in this case as

_ @l

ft) = Wlabeleq: frequency (5)



Then, the tag cloud is simply formed by selecting the top k
most frequent tags. In practice, it is possible that some ob-
jects are more important or relevant for the group than oth-
ers. Equation 77 can be easily extended to include a weight
parameter for each object. For example, these weights could
be determined based on the number of views for each item.
For simplicity, we assume in this paper that all objects have
equal weights.

In the following, we examine two other approaches for
defining the utility function f, which can be seen as exten-
sions of the frequency based approach. Since the frequency
of a tag, as defined in Equation 77, is used as basis for these
and also for subsequent definitions of the utility function,
we denote it as fr(t, @) for later reference.

4.1.2 TFIDF scoring

The first extension is to rank tags based on the same idea
as tf.idf scoring for document retrieval. This is based on
the assumption that a tag has lower utility in describing the
contents of a group if it also occurs frequently in several
other groups. In other words, the computation of the utility
score of a tag t with respect to a group G relies not only on
the contents of this particular group but also on the contents
of the other groups in the collection. In particular, we can
define the utility function as

f(t) = fr(t,G) - idf (t) (6)
where the idf of a tag in the collection is computed by
. 4
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The tag cloud comprises the top k tags in terms of f(t).

4.1.3 Graph-based scoring

The second extension is based on the assumption that co-
occurrence of tags is important. Typically, tags assigned
to objects are keywords freely chosen by the users without
restricting them to the use of an ontology or controlled vo-
cabulary. This significantly facilitates the process of tagging
and has contributed to its popularity and widespread adop-
tion, but as a consequence tags may often be ambiguous or
used in different ways by different users. For this reason,
considering combinations of tags that occur together rather
than individual tags may be more informative, since it pro-
vides context information.

To take this into consideration when constructing the tag
cloud of a group G, we create a graph of the tags in T(G),
where an edge between two tags ¢; and t; denotes that there
is an object in G tagged with both ¢; and ¢;. Then, the
utility score of a tag is derived by performing a random walk
on this graph [16]. Note that this is similar to the method
applied in [14] for ranking the tags of individual objects.

Initially, the score of each tag t is set to its frequency, i.e.,
fo(t) = fr(t,G). The transition probability from a tag ¢; to
a tag t; is computed as

sim(ts, t;)

Z sim(ti, t)

teT(G)

(8)

p(ti7 tj) =

The similarity sim(¢;,t;) between two tags can be computed
using the Google similarity distance [3], which takes into ac-
count the number of objects tagged with each tag, the num-
ber of objects tagged with both tags, and the total number

of objects in the group:

max(ni,n;j) — nij

sim(t;, t;) = exp[— 9)
where n; = log |U(t;)|, n; = log |U(t;)| and ny; = log |U(¢:)N
U(t;)|. After each iteration g, the utility score of each tag
is updated according to:

fat) =z Y fo1(ts) - p(ts,t) + (1= 2) - fo(t:) (10)

t;€T(G)

log |G| — min(n;, nj)

with z being a weight parameter. The process is repeated
until the utility score of each tag t converges to a value f(t).
Then, the top k tags with respect to f(t) are selected to
construct the tag cloud for the group.

4.2 Based on Diversity

A limitation of the approaches examined above is that the
utility score of each tag is computed independently, without
taking into consideration the rest of the tags in the cloud.
This may result in cases where certain objects of the group
are over-represented in the tag cloud, i.e., they have many
of their tags appearing in the cloud, while other objects are
under-represented, having very few or no tags in the cloud.
Especially the latter case constitutes a very negative sce-
nario, since it implies that these objects are not reachable
via the tag cloud. This problem can be addressed by follow-
ing a strategy that aims at increasing the diversity or novelty
of the members of the tag cloud [6, 4]. In the following, we
describe two approaches that can be used for this purpose.

4.2.1 Diversity

The goal in this case is to select tags that are as dissimi-
lar as possible from each other, in the sense that appear in
different sets of objects. Specifically, a tag has high utility,
if there are no other tags already in the cloud that have a
high similarity to it, i.e., that appear approximately in the
same set of objects. This can be quantified by computing
the minimum distance between the considered tag ¢t and the
currently selected tags in the cloud T¢. Since we do not wish
to completely discard the criterion of frequency, we include
it as an additional factor in computing the utility score of a
tag. Specifically, the utility score of a tag ¢ is defined as

f&)y=x-frt,G)+(1—-A)-(1— t?é%"}é sim(t,t;)) (11)

where the parameter )\ is used to weight the importance
of frequency with respect to the factor of diversity. For
example, assume that A = 0. If a tag t appears in exactly the
same set of objects as another tag t; already selected in the
cloud, then sim(¢,¢;) =1, and therefore f(t) = 0. On the
contrary, if there is no tag in the cloud that appears in any
of the objects tagged with ¢, then the maximum similarity
of ¢ with the current members of T is 0, and therefore the
utility of ¢ becomes equal to 1.

As can be seen by Equation 11, the selection of a tag now
can not be done independently, but depends instead on the
selection of other tags in the cloud. However, examining all
possible combinations is clearly impractical due to the high
computational cost. For this reason, a greedy approximation
algorithm can be used, as is typically done in search results
diversification. The algorithm is simple and proceeds as fol-
lows. First, the tag cloud is initialized with the tag that
has the highest frequency. Then, the remaining k — 1 tags



are selected by adding to the cloud, at each iteration, the
tag that maximizes the utility value in Equation 11, with
respect to the contents of the cloud up to that step.

4.2.2 Novelty

Another approach to diversify the members of a tag cloud
is to emphasize on the novelty of newly selected tags, while
the cloud is constructed. In document retrieval, this is for-
malized using the notion of information nuggets. An in-
formation nugget v is a piece of information contained in
a document. Each document may contain one or more in-
formation nuggets, and the same information nugget may
appear in more than one documents. When documents are
retrieved, a document is selected if it contains as many pre-
viously unseen information nuggets as possible.

In our case, we consider each object to constitute one
information nugget'. Selecting a tag t, provides a set of
information nuggets V' (¢) corresponding to the objects that
this tag is assigned to. Under the above assumption for the
definition of an information nugget, we have V (t) = U(t).
Let ny, 7, be the number of times that a nugget v has already
appeared in the tags currently contained in the cloud, i.e.,
No e = |{t:s € Ta : v € V(t;)}]. Also, let Ny be the total
number of information nuggets in the group; in our case,
Nv = |G|. Given a tag t and the current contents of the tag
cloud Tg, the utility score of ¢ is defined as

Z ¥(nw, 1)

veV(t)
p) = =0 (12
The function () is a discount function that reduces the
contribution of each information nugget of the tag t based on
the number of times it has already been seen by previously
selected tags. To maximize the emphasis on novelty, this
function can be defined to return 1 if n, 1, = 0, and 0
otherwise. In that case, if, for example, a tag t appears only
in a single object u, and there is already another tag of u in
the cloud, then the utility score of ¢ is 0.

As with Equation 11, in this definition of the utility func-
tion f the score of a tag depends also on the other tags exist-
ing in the cloud. Therefore, tags may again be selected using
a similar greedy algorithm to the one described in the pre-
vious section. Specifically, the algorithm starts by selecting
first the tag that provides the highest number of informa-
tion nuggets. According to our definition of nuggets, where
there is a one-to-one mapping between objects and informa-
tion nuggets, this is the tag having the highest frequency.
At each subsequent iteration, the tag providing the highest
number of new nuggets is identified and added to the cloud,
until a total number of k tags have been selected.

4.3 Based on Rank Aggregation

The tag ranking strategies presented so far take into con-
sideration the criteria of frequency and novelty. However,
there is another source of information that can be taken
into account, when constructing the tag cloud of a group
of objects: the order in which the tags appear in these ob-
jects. Although in typical applications there are no explicit
semantics or criteria determining the order in which users

LA more fine grained definition for information nuggets is
possible if the content of the objects is analyzed and taken
into consideration; however, this is orthogonal to our work.

Method

# Freq. TF.IDF R.W. Div. Nov. Rank Aggr.
1 nikon panoramio nikon nikon nikon nikon

2 people wiki d5000 people people wiki

3 d5000 ulisse people italy love wikipedia
4 italia gps italy music hotel people

5 italy wikipedia italia canada ottawa d5000

6 portrait aci flickr portrait macro cc

7 flickr basalt creative love sky gente

8 creative | faraglioni | portrait d90 rome panoramio
9 cc cc cc 2010 barcelona portrait
10 || common | fishermen | common | london d300 sicilia

Table 1: Top 10 tags selected by the different algo-
rithms for the Flickr group “This is nikon art”.

assign tags to an object, it is reasonable to assume that there
exists some (even small) correlation between this order and
the relevance or importance of the tags for the target ob-
ject. Alternatively, it is also possible to determine and use
a different ranking for the tags of each object, according to
a specified criterion, as in [14].

To take the order of tags into account, we define a utility
function based on the Borda Count method. This is a voting
algorithm that has been shown to be optimal with respect
to desired symmetry properties of typical election systems,
and has also been used for metasearch in IR [1]. The Borda
Count method works as follows. Each voter ranks a fixed set
of ¢ candidates in order of preference. For each voter, the
top ranked candidate receives ¢ points, the second ranked
candidate receives ¢ — 1 points, and so on. At the end, the
candidates are ranked in order of their total points. The
candidate with the most points wins the election.

In our case, voters correspond to objects and candidates
correspond to tags. To take the ranking of tags into account,
we discount the “vote” given by an object to a tag based
on the position of this tag in the object’s tag list, using a
discount function as discussed for Equation 2. Thus, we
define the utility score of each tag as follows:

Y alru(t)

ueU(t)

F(t) = (13)

where r,,(t) is the position (starting from zero) of the tag t in
the list of tags assigned to object u. For example, if the tag
t appears in the first position of the tag list of all the objects
in the group, then f(¢t) = 1. The tag cloud comprises the
top k tags ranked in decreasing order of their utility score.

5. EVALUATION METHODOLOGY

In the previous section, we have presented different ap-
proaches for selecting and ranking tags for a group of ob-
jects. Table 1 shows the top 10 tags selected by these meth-
ods for the Flickr group “This is nikon art”. One can notice,
for example, that frequency-based ranking selects tags like
flickr or both italy and italia, which in other methods are
replaced by other more intresting tags, such as fishermen,
music, hotel, rome, sicilia, etc.

The question that arises is which of these tag clouds is
better and why. In the following, we propose an evaluation
methodology for comparing different tag clouds. The typi-
cal purpose of a tag cloud is to serve as a summarized rep-
resentation of a group in order to allow users to search and
navigate through its items, to drill down to specific items of



interest, and to receive recommendations for groups when
adding a new item (e.g., [10, 14]). The methodology and
metrics presented in this section aim at providing an objec-
tive and automatic way to compare the characteristics and
effectiveness of different tag clouds with respect to these
properties and tasks.

5.1 Maetrics for Search and Navigation

In the following, we consider characteristics of a tag cloud
that make it useful for search and navigation. Notice that
similar metrics have been also proposed for evaluating faceted
search interfaces (see Section 2 for more details).

5.1.1 Coverage

Since a tag cloud aims at providing an entry point for
searching and navigating through the objects of a group,
ideally every object should be reachable through the tag
cloud. That is, for every object, at least one of its tags
should appear in the tag cloud. Otherwise, any tag that the
user may select would lead to a subset of results that does
not contain this particular object. To measure this property,
we define the coverage of a tag cloud T with respect to
the group of objects G it represents as the portion of the
objects in the group that have at least one tag appearing in
the cloud, i.e.,

_ HueG : Tuw)NTe # 0}

coverage(Tg) = el (14)

The higher the coverage, the more effective the tag cloud is.

5.1.2 Overlap

Another aspect is that a tag cloud, similar to a (multi-)
document summary, should avoid redundancy. This means
that we would like to avoid cases where different tags in
the cloud, when selected, lead to the same or very similar
subsets of objects. To quantify this aspect, we measure the
overlap between two tags ¢; and ¢; by computing the portion
of objects tagged with ¢; that are also tagged with ¢;, i.e.,
[U(t:) NU(t5)| / |U(t5)|- Assume, for example, that a user
selects first ¢;, browses the results, then goes back, and se-
lects t;. If the overlap between ¢; and ¢; is high, the second
step will return little or no new results. Thus, we define the
overlap of the tag cloud as the average overlap between each
pair of tags:

3 [U(t:) NU ()|

i, UG
el - (Tal - 1)

The lower the overlap, the more effective the tag cloud is.

overlap(Tg) = (15)

5.1.3  Selectivity

As already mentioned, a tag cloud should facilitate users
to drill down to specific objects of interest. Selecting all the
common tags between an object and the cloud provides the
best “zoom in” that can be achieved for this object. The
question then is how many other objects remain after this
selection is made. Assume that a user is insterested in the
object u, and that all the tags of u appearing in the tag
cloud, i.e., T'(u)NTq, have been selected. The result list will
then contain u, as well as all other objects that also have
(at least) those tags. That is, the result list will comprise
every object u; € G such that T'(u) N Te C T'(u;), while the

rest of the objects will have been filtered out. The number
of filtered out objects should be as high as possible. We call
this number, normalized to the total number of objects, the
selectivity of u with respect to the tag cloud Tg. Thus, we
measure the selectivity of the tag cloud by computing the
average selectivity of the objects in the group:

ui € G : (T(u) NT T (u;
> {ui € ( (I)GT c) € T(ui)}|
€]

ueG

selectivity(Ta) =

(16)
The higher the selectivity, the more effective the tag cloud.

5.2 User Navigation Model

The metrics described so far allow to quantify different
properties of a tag cloud with respect to search and naviga-
tion. However, they are “static”, in the sense that they do
not consider the (order and cost of) actions taken by a user
when using the tag cloud to find items of interest. Next,
we describe a user navigation model that can be used to
evaluate different tag clouds in this respect.

The reasons for preferring a simulation model to an ac-
tual user study are the following. On the one hand, if the
same user evaluates alternative tag clouds for a group, the
results can not be easily compared, because, when using
one tag cloud for navigating and searching for items, the
acquired knowledge about which tags were more or less use-
ful will affect the choices made when using the other tag
clouds. On the other hand, if different users evaluate the
alternative tag clouds for a group, again the results can not
be easily compared, due to cognitive differences among the
users or differences regarding what each user perceives as
interesting or relevant. A possible solution would be to use
non-overlapping, sufficiently large sets of users for evaluating
alternative tag clouds, and then comparing the average re-
sults among those sets. However, this makes the user study
even more expensive to conduct and to reproduce. Instead,
the proposed simulation model provides an easy and objec-
tive way for comparison. Notice that such a methodology
has also been followed in [9] to evaluate user interfaces for
personalized and interactive faceted search instead of rely-
ing on actual user studies forsimilar reasons. To simulate
user navigation, we assume that the user is trying to find
items of interest in a group that are described by a set of
tags Thav. To find an item, the user can perform two types
of actions: she can scan the list of results or she can select
a tag in the cloud to reduce the size of the result set. Each
of these actions is associated with a cost. The goal is to
measure the total cost for finding an item.

Initially, the list of items presented to the user contains
all the objects of the group, typically organized in pages of
fixed size (e.g., 10 objects per page). Let ¢, be the cost of
scanning one page of objects. We also assume that the user
is willing to scan up to a relatively small number of pages,
say mp; otherwise, if the list comprises more than n, pages,
she would prefer instead to select a tag to narrow down the
list of results. To capture this, we set the cost c; of selecting
a tag to be equal to scanning n, pages, i.e., ¢t = nyp - cp.

The process works as follows:

1. The result list is initialized with all the objects in the
group.

2. If the current result list contains at most n, pages or



if there are no more tags left to use, the user scans the
results and the session ends.

3. Otherwise, the user selects one tag from Tpq N Ta
and the result list is updated. The process repeats
from step 2.

At the end of the session, the navigation cost is the sum of
the costs of all the actions performed by the user (i.e., tag
selections and page scans). This cost is divided by the cost
needed to scan all the initial list of objects without using the
tag cloud, to obtain a normalized value in [0,1]. Therefore,
if the user performed n: tag selections and n2 page scans,
then the navigation cost is:

ni-Cc+n2-Cp
no -+ Cp

nav_cost = (17)

where ng = [ (|G| / (page_size) .

There are two questions still to be answered to fully spec-
ify the simulation process. First, which are the tags Tyav
that are used for the navigation. Second, when a user se-
lects one tag from T4, N Ta, which tag is selected.

Regarding the first question, for the purpose of the simu-
lation, we assume that for each object u in the group there
exists one user that wants to navigate the collection using
the tags of this object, i.e., Thav = T'(u), and we compute
the average navigation cost among all users. Of course, in
practice, more users may be interested in certain objects
rather than others. In that case, it is possible to generalize
the process using different weights for the users, as discussed
also in Section 4.1.1.

For the second issue, we adopt the approach used in [9]
for selecting facet-value pairs when simulating user behavior
in a faceted browsing interface. Specifically, three types of
users are considered. First-match users select the tag in
Thav N Tg that has the highest rank in Tg. The intuition
for this lies in the fact that tags in a cloud are visualized
according to their ranking, with top tags being presented
more prominently than others (typically, in terms of font
size). Thus, users are more likely to spot and select highly
ranked tags first. In contrast, last-match users select the tag
having the lowest rank. The reason for this behavior is that
those tags are less frequent, and therefore more selective,
leading to a smaller subset of results. Finally, random-match
users select a tag randomly.

5.3 Group Recommendation Accuracy

So far, we have considered the task of using the tag cloud
to find items of interest within a group. Another important
and common task is to recommend groups for new items. In
this case, we assume that we are given an object u tagged
with a set of tags T'(u), and the system needs to recommend
groups for u from the set of groups G existing in the collec-
tion. A straightforward approach is to compare u with each
object in each available group and recommend the group
that contains the most similar objects to u. However, this is
clearly very expensive, especially when this operation needs
to be done online. Instead, we want to use the tag cloud of
each group for this purpose.

To assign an object to a group, we compute a similarity
score based on the common tags between the object and the
tag cloud of the group, taking also into consideration the
importance (i.e., the ranking) of these tags in the tag cloud.

Specifically, we define this similarity as follows:

> alr®)

teT(u)NTa

sim(u,G) = 70|

(18)
where a(r(t)) is a discount function applied on the rank r(t)
of the tag t in T, as in Equation 2.

Given an object u, groups are then recommended in de-
creasing order of similarity. Using different tag clouds, re-
sults in different lists of retrieved groups. In addition, if
we assume that we know the relevant groups for the given
object, i.e., the correct assignments, then it is possible to
evaluate different tag clouds using standard IR metrics.

6. EXPERIMENTAL EVALUATION

We have conducted an empirical evaluation of the tag
ranking algorithms presented in Section 4, using a large,
real-world dataset obtained from Flickr containing groups
of tagged images. First, we describe the characteristics of
this dataset, and then we present the results of the evalua-
tion with respect to the metrics presented in Section 5.

6.1 Dataset

To evaluate the tag ranking methods, we collected a dataset
comprising groups of tagged photos from Flickr. We chose
Flickr among a set of several popular Web 2.0 applications
that provide tagging functionality and use tag clouds, such
as Delicious, Technorati, Facebook or Last.fm, for mainly
two reasons. First, there exists a very large number of groups
of photos in Flickr, with groups often containing hundreds
or thousands of photos, having several tags assigned to each
of them. This allowed us to obtain a very large dataset in
order to make the evaluation more interesting and challeng-
ing. Second, obtaining the data was significantly facilitated
by the API? provided by Flickr for such purposes.

The Flickr API was used to collect data about groups of
photos over a period of two weeks. Flickr does not provide
a direct way to browse all available groups; instead, one
needs to search for groups based on keywords. Thus, to
obtain groups of photos we used a total of 10 keywords, in
particular: autumn, animals, architecture, city, beach, food,
film, christmas, art, and car. These were selected from the
list of “all time most popular tags” in Flickr3.

For each one of these keywords, we retrieved the top 60
groups returned by the API. Specifically, for each group,
we retrieved up to 2000 photos, storing for each photo its
ID, its owner, the date posted, the group(s) it belongs to,
and the list of assigned tags (with the order they appear
in Flickr). Note that in some cases, some groups or photos
could not be retrieved, either because of being set as private
or due to some connection error. Thus, there exist vari-
ations in the number of groups that were finally collected
per keyword, as well as the number of photos per group,
which however corresponds to a realistic scenario. More-
over, some pre-processing was done on the collected data
to reduce noise, including stopword removal and stemming.
After this process, we also removed: tags that had been used
by less than 2 users; photos that had less than 4 tags; and
groups that contained less than 50 photos.

http://wuw.flickr.com/services/api/
3http://www.flickr.com/photos/tags/
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number of tags k in the cloud.

Keyword # of groups # of photos per group # of distinct tags per group # of tags per ph0t9
avg | max | min avg | max min avg | max [ min
animals 56 1248 1758 843 3068 5106 1114 10 142 4
architecture 59 1416 1748 510 2865 5245 579 12 71 4
art 55 1164 1650 418 3098 5820 1232 12 73 4
autumn 29 1220 1620 519 2655 5361 134 11 69 4
beach 38 1216 1548 426 2175 4581 616 13 72 4
car 48 1391 1719 973 2625 5262 1027 13 92 4
christmas 15 844 1438 417 1644 3438 605 10 68 4
city 49 1278 1865 415 2586 4331 581 11 72 4
film 53 1367 1862 460 2758 4407 1034 12 72 4
food 49 1212 1741 559 2578 4387 1070 10 70 4
[ TOTAL [ _ 451 || 1270 | 1865 | 415 || 2707 | 5820 | 134 | 11 | 142 [ 4 ]
Table 2: Dataset statistics.
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o0 - Figure 3 displays the results for the different tag ranking
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Figure 2: Distribution of (a) group frequency and
(b) photo frequency of tags.

The final dataset contained 451 groups, 488,112 photos,
and 112,514 tags, with each group having on average 1270
photos and 2707 distinct tags. Table 2 provides detailed
statistics about the dataset. Moreover, Figure 2 plots the
distribution of tag frequencies, in terms of number of groups
and number of photos they appear in. For example, one can
see that the majority of the tags has a relatively low group
frequency, e.g., less than 30 groups, while there are only a
few tags that appear in more than half of the groups. The
distribution is similar for the photo frequency, with most
tags appearing in not more than 100 different photos. Of
course, there are also some tags like names of colors, cities
or countries, or tags such as sky, sea, street, that appear in
the majority of the groups and in more than 10,000 photos.

6.2 Results

We now present the results of our experiments on the
Flickr dataset described above. We have implemented the
algorithms described in Section 4, and we compare them ap-
plying the evaluation methodology presented in Section 5.

In the implementation and experiments, we used the fol-
lowing configuration. For the random walk algorithm (Equa-
tion 10) and for the diversification algorithm (Equation 11),
we used z = 0.5 and A = 0.5, respectively. As discount
function in Equation 2 we used the one in Equation 3 with
B = 0.1. In Equation 12, we set y(n) =1 for n = 0, or 0
otherwise, to emphasize novelty. Finally, in the user naviga-
tion model, we used n, = 2 and we assumed that each page
of results displays (at most) 10 objects.

In the following discussion and in the plots, we refer to
the methods presented in Section 4 using the abbreviations
FRQ, TFIDF, RW, DIV, NOV, and RA, respectively. The
presented results refer to average values over all the 451
groups in the dataset.

As shown, FRQ performs reasonably well, mainly for the
metrics of coverage and selectivity and less for overlap. For
example, it provides a coverage starting from 87% for top-k
= 20, reaching 95%, for top-k = 100. RW and RA exhibit a
similar performance to FRQ, with the latter outperforming
the other two regarding overlap. In contrast, the perfor-
mance of TFIDF is very low both for coverage and selectiv-
ity, but it outperforms all three previous approaches in over-
lap. Finally, DIV and NOV perform better than all other
approaches. Especially for coverage, NOV achieves excel-
lent results, starting from 93% for top-k = 20 and reaching
99% for top-k = 100. It also has good results for overlap for
all values of k, although for £ > 60 DIV becomes equally
good or even better.

As expected, increasing the size of the tag cloud improves
the performance of all methods in all metrics.

6.2.2 Navigation Cost

Figure 4 displays the navigation cost for the tag clouds
created with the different ranking algorithms, considering
the three types of users described in Section 5.2, and for
different tag cloud sizes.

A first observation is that TFIDF has a much higher nav-
igation cost than all other methods. This is a direct conse-
quence of its low coverage, since photos that are not covered
by the tag cloud can not benefit from it during navigation.
For the rest of the methods, the observations are similar to
the results presented above. This has to do with the fact
that the navigation cost is affected by coverage and selectiv-
ity. Thus, for example, since NOV performed better than all
other methods in both those metrics, this also contributed
to having the lowest navigation cost. As expected, the nav-
igation cost decreases for all methods as the tag cloud size
increases; also, it is higher for first-match users and lower
for last-match users.

6.2.3 Recommendation Accuracy

Here we consider the task of group recommendation. Given
a tagged photo and a set of groups, the goal is to recommend
groups for this photo based on their tag clouds. For each
of the 451 group, we selected as test photos the 10 most re-
cent ones added to it by different users. Then, for each test
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Figure 5: Success@n for group recommendation with (a) top-k = 40 and (b) top-k = 100.

photo, we computed a ranked list of recommended groups,
using the different tag clouds provided by the ranking algo-
rithms. The similarity between a photo and the tag cloud
of a group was computed according to Equation 18.

The performance of each tag cloud is determined by how
high the relevant group(s) of a photo appear in the list of rec-
ommendations. As relevant, we considered the group from
which the photo was selected, as well as any other groups it
might also belong to. Since very few photos appear in more
than one group, we used the common IR metric success@n,
which takes the values 1 or 0, depending on whether a rele-
vant result is found among the top n recommendations.

Figure 5 displays the average values of success@n over all
the test photos, for different values of n and for tag clouds
of size 40 and 100 tags. Interestingly, when only the first
recommendation is considered, TFIDF and RA achieve the
highest accuracy. However, the performance of TFIDF re-
mains approximately at the same levels as n increases. This
is attributed to the fact that TFIDF discards many frequent
tags. This helps to make a more accurate recommendation
for photos that are covered by the tag cloud, but it misses

for all the rest. Instead, RA and DIV continue to be better
for n = 2 or 3. For higher values of n, NOV achieves the
best performance.

6.2.4 Execution Time

Finally, we also measured the execution time for the dif-
ferent ranking algorithms. The following table shows the
average time (in sec) per group, for top-k = 100:

[FRQ [ TFIDF [ RW_| DIV | NOV | RA ]
[0.002 | 0.003 | 87.813 | 9.552 | 0.206 | 0.008 ]

FRQ, TFIDF and RA are simple, one-pass algorithms,
therefore their execution time was very low. The diversi-
fication algorithms are more expensive, since they need to
perform k passes. At each pass, each of the remaining tags
is compared either with each tag already in the cloud (DIV)
or with the set of information nuggets in the cloud (NOV).
Thus, DIV requires even more computations than NOV.
Indeed, the execution time of NOV was below half second,
while DIV required a few seconds. Finally, RW exceeded 1
min, which makes it not suitable for online computation.



6.2.5 Summary of Results

Summarizing the results, we can make the following main
observations:

e As a baseline, FRQ achieved reasonably good results,
which verifies that it is a good criterion for select-
ing tags. Nevertheless, it was outperformed by other
methods in all metrics.

e TFIDF showed a very poor performance for all metrics
except overlap. This is because it penalizes frequent
tags that occur also in many groups. Although this
lowers the overlap also within each group, excluding
those tags results in many photos not having any com-
mon tags with the cloud.

o RW failed to show a noticeable improvement over FRQ.

This means that, in our setting, propagating the scores
in the tag graph did not improve the ranking. Even
worse, it significantly increased the computational cost.
Still, it would be worth investigating whether enrich-
ing the tag graph with content-based similarity of tags
and photos provides a more positive effect.

e The diversification methods, DIV and NOV, achieved
the best performance in all metrics. NOV clearly out-
performed all methods, especially for coverage, as well
as for recommendations. This is due to the fact that
it selects tags that cover as many not previously seen
items as possible. In some cases, the performance of
DIV was equally or slightly better than NOV; how-
ever, NOV has also a lower computational cost.

e Finally, RA performed overall a little better than FRQ
but not as well as DIV and NOV. Also, its execution
time was similar to frequency.

7. CONCLUSIONS

In this paper, we have presented a set of methods and
metrics for constructing and evaluating tag clouds to de-
scribe groups of tagged resources. The presented algorithms
include frequency or tf.idf based ranking, random walk on
tag graphs, diversification of tags, and rank aggregation.
The proposed metrics cover several aspects of tag clouds for
search, navigation and recommendations. The results of our
large-scale evaluation on groups of Flickr photos have shown
that methods employing diversification or rank aggregation
can improve the performance of tag clouds with respect to
these metrics, compared to the traditional frequency-based
ranking, while still having a similar or comparable compu-
tation time and without relying on content-based analysis.
There exist several interesting directions for future work, as
already pointed out while discussing related efforts. These
include extracting semantics of tags and exploiting content-
based similarity of objects.
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