
Frequency-aware Similarity Measures

Why Arnold Schwarzenegger is Always a Duplicate

Dustin Lange Felix Naumann
Hasso Plattner Institute, Potsdam, Germany

firstname.lastname@hpi.uni-potsdam.de

ABSTRACT
Measuring the similarity of two records is a challenging prob-
lem, but necessary for fundamental tasks, such as duplicate
detection and similarity search. By exploiting frequencies of
attribute values, many similarity measures can be improved:
In a person table with U.S. citizens, Arnold Schwarzenegger
is a very rare name. If we find several Arnold Schwarzeneg-
gers in it, it is very likely that these are duplicates. We are
then less strict when comparing other attribute values, such
as birth date or address.

We put this intuition to use by partitioning compared
record pairs according to frequencies of attribute values.
For example, we could create three partitions from our data:
Partition 1 contains all pairs with rare names, Partition 2 all
pairs with medium frequent names, and Partition 3 all pairs
with frequent names. For each partition, we learn a different
similarity measure: we apply machine learning techniques
to combine a set of base similarity measures into an overall
measure. To determine a good partitioning, we compare dif-
ferent partitioning strategies. We achieved best results with
a novel algorithm inspired by genetic programming.

We evaluate our approach on real-world data sets from a
large credit rating agency and from a bibliography database.
We show that our learning approach works well for logistic
regression, SVM, and decision trees with significant improve-
ments over (i) learning models that ignore frequencies and
(ii) frequency-enriched models without partitioning.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering—Similarity Mea-
sures

General Terms
Algorithms

Keywords
similarity measures, duplicate detection, similarity search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. COMPARING RECORDS
The problem of determining the similarity (or distance) of

two records in a database is a well-known, but challenging
problem. Suitable similarity measures help to find dupli-
cates and thus cleanse a data set, or they can help finding
nearest neighbors to answer search queries. The problem
comprises two main difficulties: First, the representations
of same real-world objects might differ due to typos, out-
dated values, and sloppy data or query entries. Second, the
amount of data might be very large, thus prohibiting exhaus-
tive comparisons. The first problem is overcome by devising
sophisticated similarity measures (the focus of this paper);
the second problem is alleviated by efficient algorithms and
indexes that avoid comparing each entry or query with all
other entries.

Our original motivation stems from a cooperation with
Schufa, a credit rating agency that stores data of about
66 million citizens, which are in turn reported by banks,
insurance agencies, etc. To ensure the quality of the data, it
is necessary to detect and fuse duplicates therein [14]. Also,
queries about the rating of an individual must be responded
to as precisely as possible.

We propose a novel comparison method that partitions
the data using value frequency information and then auto-
matically determines similarity measures for each individual
partition. We show that this method indeed finds a differ-
ent configuration for each partition and that we achieve an
overall better precision. Note that while we motivate our
ideas using a person data use case, our approach is general
and can be used with any composed similarity measure. We
report on experiments with the person data set, but also
with a bibliographic data set from DBLP.

Example: Two Arnold Schwarzeneggers. Assume a ta-
ble in which each row represents a person. We know a
person’s name, birth date, and address. We need to de-
cide whether two different records represent the same per-
son. Usually, we use some similarity measure to answer this
question. A common approach is to use the same, carefully
crafted similarity measure across all records. We argue that
it makes sense to use different similarity measures for differ-
ent groups of records.

We explain the intuition of our idea by means of Arnold
Schwarzenegger. In a person table containing US citizens,
we cannot find many Arnold Schwarzeneggers. In fact, it is
highly unlikely that there are two Arnold Schwarzeneggers
stored in our table. Arnold Schwarzenegger is our represen-
tative for a rare name. From this rarity, we conclude that

243

another record with this same name is already quite likely to
be a duplicate of the earlier. We are less rigorous about the
similarity of birth date and address: For two rows with rare
names, we argue that address and date-of-birth similarity
are less important than for rows with frequent names. 2

With this paper, we make the following contributions:
Exploiting frequencies: We propose two approaches to ex-
ploit frequencies in learnable similarity measures: The first
directly incorporates frequencies in machine learning mod-
els. The second partitions the data according to value fre-
quencies and learns a composite similarity measure for each
partition.
Partitioning strategies: We propose different partitioning
strategies: a greedy partitioning algorithm, equi-depth par-
titioning, random partitioning, as well as a novel partition-
ing algorithm inspired by genetic programming.
Evaluation on two real-world data sets: The first is a person
data set from Schufa, a large credit rating agency. The data
set contains ca. 66m person records and 2m search queries,
from which we evaluate 10,000 of the most difficult ones.
The second data set is from the DBLP bibliography, from
which we created a data set that contains 10,000 paper ref-
erence pairs (available from our website, see Sec. 5).

2. RELATED WORK
In the last decades, many researchers have worked on du-

plicate detection. For a general overview on duplicate de-
tection, we refer the reader to excellent surveys [4, 15].

Bilenko et al. use machine learning techniques to learn
similarity measures [3]. They learn base similarity measures
using SVMs and apply another SVM to combine the base
similarity measures. Sarawagi and Bhamidipaty use active
learning for interactive duplication detection [11]. They also
employ machine learning techniques (decision trees, Naive
Bayes, and SVMs) to combine base learners. We adapt and
greatly extend this approach by creating a set of learners
for different partitions of the data. Shen et al. [12] propose
to create a set of different matchers for different portions
of the data. They focus on the task of integrating a set
of data sources and create different similarity measures for
comparing entities from the different sources. In contrast to
their work, we partition data according to frequencies and
not based on different sources of the data. Moreover, we
employ a set of similar matchers, i.e., we learn one simi-
larity function for each of the partitions – but all of them
with the same machine learning technique. Another idea is
to use actual attribute values for partitioning (e.g., using a
Country attribute, we learn one measure for US citizens and
one measure for Austrian citizens). While this idea depends
on the availability of attributes values that are suitable for
partitioning, our approach is more generally applicable as it
only exploits meta-information of the values (frequencies).

There are also approaches to duplicate detection/entity
resolution that exploit knowledge about frequencies. Bhat-
tacharya and Getoor apply collective entity resolution; by
incorporating knowledge about references between entities,
entity resolution can be improved [2]. Their approach starts
by resolving entities with least frequent names, since “two
references with the name ‘A. Ansari’ are more likely to be the
same, because ‘Ansari’ is an uncommon name.” Torvik and
Smalheiser propose a probabilistic approach to author name
disambiguation [13]. In their model, they include the fre-

quency of names to predict the probability that two names
match. They also recognize that “if the name is very un-
usual (e.g., D. Gajdusek), the chances are better that any
two randomly chosen articles with that name are written by
the same individual than if the name is very common (e.g.,
J. Smith).” We also exploit this insight, but with an entirely
different approach.

3. COMPOSING SIMILARITY
In this section we describe the similarity model used

throughout the paper. We follow the common and proven
notion of defining individual similarity measures for different
attributes and attribute types; for instance, dates are com-
pared differently than names or addresses. These individual
similarities are subsequently combined to define some global
similarity of two records.

Base Similarity Measures. We first split the problem of
measuring the similarity of two records into smaller sub-
problems. We define a set of base similarity measures
simp(r1, r2), each responsible for calculating the similarity
of a specific attribute p of the compared records r1 and r2
from a set R of records. In our use case, we have three
functions simName, simBirthDate, and simAddress. All base sim-
ilarity measures can be chosen independently. For example,
we could use Jaro-Winkler distance for simName [15], the rel-
ative distance between dates for simBirthDate, and Euclidean
distance for simAddress. The base similarity measures can also
test for equality (e.g., for email addresses) or boolean values
(e.g., for gender).

Each base similarity measure is a function

simp : (R×R)→ [0, 1] ⊂ R (1)

In the following, we assume the domain of the similarity
measures to be between 0 and 1, with 1 representing identity
and 0 dissimilarity of the compared record parts.

Composition of Base Similarity Measures. To calculate
the overall similarity of two records, we integrate the base
similarity measures into an overall judgement. We consider
the task of judging whether two records are similar a classi-
fication task: the classes are isSimilar and isDissimilar ; the
features are the results of the base similarity measures. To
derive a general model, we employ machine learning tech-
niques. We have enough training data for supervised learn-
ing methods. In case of lacking training data, active learning
methods could be chosen [11].

Due to their popularity and strong performance in differ-
ent classification tasks, we selected the following three clas-
sification methods for further analysis: logistic regression,
decision trees, and support vector machines.

4. EXPLOITING FREQUENCIES
In our use case, we have data about a large set of per-

sons. We need to define a similarity measure for comparing
persons, but our findings are equally applicable to other use
cases, such as products, bills, etc. We want to answer the
question: Can information about data distribution improve
our similarity measurement?

In this section, we propose two approaches to exploit fre-
quencies in learning similarity measures. A requirement for
both approaches is a frequency function that is introduced in

244

Sec. 4.1. In Sec. 4.2, we describe how to adapt the machine
learning techniques to exploit frequencies. As an alterna-
tive approach, a partitioning idea is discussed in detail in
Sec. 4.3.

4.1 Frequency Function
First of all, we need to select attributes for frequency eval-

uation (in our use case, we select the attributes FirstName
and LastName). For two compared records, we then deter-
mine the value frequencies of the selected attributes. We
define a frequency function f that takes as arguments two
records and determines a frequency:

f : R×R→ N (2)

Modeling the frequency function is a domain-specific task.
In the following, we describe how we modeled this function
in the Schufa use case. Our goal is to partition the data
according to the name frequencies. We have two name at-
tributes in our data model (FirstName and LastName) and
need to handle several data quality problems: swapping of
first and last name, typos, and combining two attributes
(so that one frequency value is calculated). First and
last name may be switched (e. g., FirstName=Arnold, Last-
Name=Schwarzenegger; FirstName=Schwarzenegger, Last-
Name=Arnold). We take this possible switch into account
by calculating the attribute similarities for both attribute
value combinations (switched and non-switched) and pro-
ceeding with the combination that results in a larger sim-
ilarity value. Next, typos may occur in attribute values
(e. g., Arnold; Arnnold). We assume that at least one of
the spellings is correct and that a typo leads to a less fre-
quent name. Although this is not always true, this heuristic
works in most cases. Thus, we take the larger frequency
value of both spellings. Lastly, we combine the frequency
values of first and last name. We argue that the less frequent
name is more distinguishing and helpful (e. g., Schwarzen-
egger is more distinguishing than Arnold). Thus, we take
the smaller frequency of the different attribute values as the
result of our frequency function. Experiments with alter-
natives, namely using the maximum or the average instead
of the minimum, showed that minimum is in fact the best
accumulation function in our use case.

This description reflects the characteristics of our person
data use case; for other data sets, the individual frequency
function must be adjusted accordingly. For the DBLP data
set, our frequency function works similar to the Schufa func-
tion explained above, except that there is no check for
switched first and last names, since the name parts are not
split in this data set.

4.2 Frequency-enriched Models
A first idea to exploit frequency distributions is to alter

the models that we learned with the machine learning tech-
niques explained in Sec. 3. One could manually add rules
to the models, e.g., for logistic regression, we could say “if
the frequency of the name value is below 10, then increase
the weight of the name similarity by 10% and appropriately
decrease the weights of the other similarity functions”. Man-
ually defining such rules is cumbersome and error-prone.

Another idea is to integrate the frequencies directly into
the machine learning models. We add the frequencies of the
compared entities’ attribute values as an additional attribute
to the discussed models. Some machine learning techniques

can only handle normalized feature values (e. g., logistic re-
gression and SVMs). Since all similarity values are required
to lie in the range [0, 1], we need to scale the frequency values
accordingly. We apply the following scaling function:

scaled f(r1, r2) =
f(r1, r2)

M
, (3)

where M is the maximum frequency in the data set.
Adding attributes to the learned model means adding

complexity and mixing information. The models become
“polluted” with frequency information. The comprehensibil-
ity of the created models is lower, since each model contains
mixed decisions based on similarity values and frequencies.
As our experiments in Sec. 5 show, this idea is outperformed
by the partitioning approach that we describe in the follow-
ing.

4.3 Partitioning
We propose to partition compared record pairs based on

frequencies and create different models for the different par-
titions. These models are equal to the ones learned in Sec. 3,
we just create several of them. The models still decide only
on the basis of similarities. Since the models do not contain
any additional information about the frequencies, they are
still as easy to interpret and adjust as before.

We now partition compared record pairs into n partitions
using the determined frequencies. The number of partitions
is an important factor for partitioning. A too large number
of partitions results in small partitions that can cause over-
fitting. A too small number of partitions leads to partitions
too large for discovering frequency-specific differences. To
determine a good number of partitions as well as a good
partitioning, we need a partitioning strategy. We introduce
several strategies in Sec. 4.4.

In the following, we formally define partitions. The entire
frequency space is divided into non-overlapping, continuous
partitions by a set of thresholds:

Θ = {θi |i ∈ {0, . . . , n} ∧ θ0 < ... < θn} (4)

with θ0 = 0 and θn = M + 1, where M is the maximum
frequency in the data set. The partitions are then defined
as frequency ranges Ii:

Ii = [θi, θi+1) (5)

A partitioning I is then a set of partitions that covers the
entire frequency space:

I = {Ij | j ∈ {0, . . . , n− 1}} (6)

A partition covers a set of record pairs. A record pair
(r1, r2) falls into a partition [θi, θi+1) iff the frequency func-
tion value for this pair lies in the partition’s range:

θi ≤ f(r1, r2) < θi+1 (7)

For each partition, we learn a composite similarity mea-
sure using the learning techniques presented in Sec. 3. It
is now the task of the learning method to derive an appro-
priate model for each partition. In other words, we shift
the problem of appropriately handling rare or frequent val-
ues to the learning method. If the learning method cannot
exploit frequencies, then we expect the method to generate
the same model for each partition (assuming each partition
is large enough for creating appropriate models).

245

With the set of composite similarity measures for all par-
titions at hand, we can judge new record pairs. For a record
pair, we first determine the partition that the pair belongs
to with Formula (7). We then apply only the composite
similarity measure that has been learned for this partition.
By retaining frequency lists for all frequency-relevant at-
tributes, the frequency lookup is quite fast. Thus, our ap-
proach hardly affects the query time. This is quite important
for our use case as each query needs to be answered in less
than a second.

4.4 Partitioning Strategies
An important problem in partitioning our data is to de-

termine the number of partitions as well as the thresholds
that separate the partitions. Since the number of partitions
is determined by the number of thresholds, we only need to
determine a set of thresholds.

A complete search on the threshold space is too expen-
sive. For a maximum frequency M , we could define up
to M − 1 thresholds, resulting in a separate partition for
each possible frequency. Overall, there are 2M−1 possibili-
ties to choose threshold sets, since each distinct frequency
f ∈ {0, . . . ,M} can be either contained or not contained
in a threshold set. For a reasonable maximum frequency
of M = 1, 000, 000, there are obviously too many thresh-
old combinations to consider. Even if we consider only the
number of distinct frequencies that actually occur as possi-
ble thresholds in the data set, the computation costs are too
high. In our use case data set, the frequency of the most
frequent last name is 616,381. The number of distinct fre-
quencies is 4629, which results in 24628 theoretically possible
different partitionings.

To efficiently determine a good partitioning, we suggest
the following partitioning strategies, which we empirically
compare in Sec. 5.1 and Sec. 5.2:
Random partitioning: To create a random partitioning,
we randomly pick several thresholds θi ∈ {0, . . . ,M + 1}
from the set of actually occurring frequencies of the con-
sidered attribute values. The number of thresholds in each
partitioning is also randomly chosen. The maximum number
of partitions in one partitioning as well as the total number
of generated initial partitionings are fixed. For our use case,
we define a maximum of 20 partitions in one partitioning.
Equi-depth partitioning: We divide the frequency space
into e partitions. Each partition contains the same number
of tuples from the original data set R. For our use case, we
create partitionings for e ∈ {2, . . . , 20}.
Greedy partitioning: We define a list of threshold can-
didates C = {θ0, . . . , θn} by dividing the frequency space
into segments with the same number of tuples (similar to
equi-depth partitioning, but with fixed, large e, in our case
e = 50). We then begin learning a partition for the first
candidate thresholds [θ0, θ1). Then we learn a second parti-
tion that extends the current partition by moving its upper
threshold to the next threshold candidate: [θ0, θ2). We com-
pare both partitions using F-measure. If the extended par-
tition achieves better performance, the process is repeated
for the next threshold slot. If not, the smaller partition is
kept and a new partitioning is started at its upper thresh-
old; another iteration starts with this new partition. This
process is repeated until all threshold candidates have been
processed.

This greedy partitioning algorithm stops after encounter-

ing a worse F-measure. A worse F-measure is an indicator
for a more difficult set of tuples in the analyzed partition;
thus, it makes sense to create a new partition for this set.
Genetic partitioning: Another partitioning approach is
inspired by genetic algorithms. Since we have achieved over-
all best results with this approach in our experiments, we
dedicate the following section to genetic partitioning.

4.5 Genetic Partitioning
To determine a good partitioning, but keep the number

of generated and evaluated partitions low, we apply ideas
inspired by genetic algorithms [1, 8]. Genetic algorithms
in turn are inspired by biological evolution. From an ini-
tial population, the fittest individuals are selected. These
individuals “breed” offspring that are assumed to be fitter
than their parents. Random genetic mutation and crossover
produce even fitter offspring.

Indeed, genetic algorithms are a good fit to our problem.
A specific partitioning contains several thresholds, some of
which are a good choice, while others should be moved by
a small portion and again others should be replaced or re-
moved completely. Deciding whether a threshold is a good
choice is difficult, as we can only evaluate performance of
partitions, and these are defined by two thresholds. In addi-
tion, we do not know the optimal number of partitions in ad-
vance. Due to their intelligent selection algorithms and ran-
dom events, genetic algorithms can efficiently handle these
choices and are a promising choice for partitioning (as we
also empirically show in Sec. 5.1 and 5.2).

Genetic Partitioning Algorithm. The detailed steps of
the genetic partitioning algorithm are the following:
Initialization: We first create an initial population con-
sisting of several random partitionings. These partitionings
are created as described above with the random partitioning
approach.
Growth: Each individual is grown. We learn one composite
similarity function for each partition in the current set of
partitionings using the techniques presented in Sec. 3.
Selection: We then select some individuals from our popu-
lation for creating new individuals. A fitness function deter-
mines which partitionings to select. In our case, we choose
F-measure as fitness function using our training data. For
each partition, we determine the maximum F-measure that
can be achieved by choosing an appropriate threshold for the
similarity function. We weight the partitions’ F-measure
values according to the compared record pairs in each to
calculate an overall F-measure value for the entire partition-
ing. We then select the partitionings with highest weighted
F-measure. For our use case, we select the top five parti-
tionings. Note that we use a test set for evaluation that is
different from the training set used for learning the compos-
ite similarity measure for each partition.
Reproduction: We build pairs of the selected best indi-
viduals (during all iterations) and combine them to create
new individuals. Two techniques are applied to each new
partitioning. Recombination: We first create the union of
the thresholds of both partitionings. For each threshold,
we randomly decide whether to keep it in the result parti-
tion or not. Both decisions have equal chances. Mutation:
We randomly decide whether to add another new (also ran-
domly picked) threshold and whether to delete a (randomly
picked) threshold from the current threshold list. All possi-

246

bilities have equal chances. If a partition is too small, then
we have too little training and test data available. To avoid
too small partitions (and thus overfitting), we define a min-
imum partition size (we set this value to 20 record pairs
in our use case). Randomly created partitionings with too
small partitions are discarded. In our use case, we create
two new partitionings for each partitioning pair processed
in the reproduction phase.
Termination: The resulting partitions are evaluated and
added to the set of evaluated partitions. The selec-
tion/reproduction phases are repeated until a certain num-
ber of iterations is reached or until no significant improve-
ment can be measured. In our use case, we require a min-
imum F-measure improvement of 0.001 after 5 iterations.
The algorithm returns the partitioning that has been evalu-
ated best during all iterations.

5. EVALUATION
In this section, we provide a detailed evaluation of our

approach. We describe the Schufa data set in Sec. 5.1. We
compare different partitioning strategies and show improve-
ments achieved by our approach. In Sec. 5.2, we show results
of experiments on a data set extracted from DBLP.

We performed all tests on a workstation PC. Our test ma-
chine runs Windows XP with an Intel Core2 Quad 2.5 GHz
CPU and 8 GB RAM. We used Weka [6] as implementation
of the machine learning techniques.

5.1 Evaluation on Schufa Data Set
We evaluated our approach on real-world data from

Schufa, a large credit agency. The Schufa database contains
information about the credit history of about 66m people.

Preparation. Our data set consists of two parts: a per-
son data set and a query data set. The person data set
contains about 66 million records. The most relevant fields
for our search problem are name, date and place of birth,
and address data (street, city, zip). The query data set con-
sists of 2 million queries to this database. For each query,
we know the exact search parameters (most record fields
are mandatory), and the result obtained by Schufa’s current
system. This result contains up to five candidate records.

The Schufa system automatically evaluates its perfor-
mance. A confidence value is assigned to each result. If
only one result could be found and if its confidence is above
a pre-determined high threshold, then the result is auto-
matically accepted. Results with a confidence below a pre-
determined low threshold are automatically discarded. For
all other results, Schufa is particularly careful: An expert
needs to determine whether one of the results can be ac-
cepted or not.

Thus, there are many manually evaluated queries (the
least confident cases) that we can use for evaluating our
approach. We randomly selected 10,000 of these most diffi-
cult queries for evaluating our system: we built record pairs
of the form (query, correct result) or (query, incorrect re-
sult), depending on how the result has been evaluated by
the expert. We can compare with the results of Schufa’s
current system and we can show whether our system would
allow Schufa to save some of the (expensive) manual deci-
sions without losing precision.

The automatically evaluated cases are not interesting for
us: by comparing with Schufa’s current system, we could

0 87

0.85

0.86

0.87

e

0.83

0.84

F-
m
ea
su
re

0 8

0.81

0.82

F

0.8

Current system Logistic Regression Decision Tree SVM

No frequencies Frequency- Equi-depth Greedy Random GeneticNo frequencies
(similarities only)

Frequency
enriched
models

Equi depth
partitioning

Greedy
partitioning

Random
partitioning
(best of 50)

Genetic
partitioning
(50 iterations)

Figure 1: Comparison of frequency approaches and
partitioning strategies for Schufa data set

only determine whether our system would act in the same
way, without knowing whether these decisions are correct.

Results. In this experiment, we compare the results of
the learned similarity measures when applying all partition-
ing strategies described in Sec. 4.4. All results are deter-
mined using 10-fold CV on the 10k query data set containing
difficult queries. We show the results in Fig. 1.

We observe improvements with partitioning for all learn-
ing methods and almost any partitioning strategy. The
partitioning approaches also achieve better results than the
frequency-enriched models.

For equi-depth partitioning, greedy partitioning, and ran-
dom partitioning, we can see no clear leader across all learn-
ing methods. The achieved results are specific to each
method. For all learning methods, genetic partitioning
achieves the overall best results.

When comparing learning methods for genetic partition-
ing, logistic regression achieves better results than SVM,
while decision trees are relatively far behind. Logistic re-
gression can gain the largest profit from genetic partitioning.
Thus, this method can even exceed SVM results. Decision
trees profit less from genetic partitioning than SVMs or lo-
gistic regression.

We further show the result of Schufa’s manually devel-
oped current system. In total, we can improve this system’s
F-measure by approx. 6%. This improvement translates to
600 of the 10,000 evaluated most difficult queries (with least
confident results) and is a significant and valuable improve-
ment for this use case.

5.2 Evaluation on DBLP Data Set
To investigate whether our approach also works for other

data sets, we prepared another data set from DBLP [9],
a bibliographic database for computer sciences. The main
problem in DBLP is the assignment of papers to author
entities. As described by Ley, DBLP is not perfect and
needs to handle joins and splits: Author entries that falsely
summarize publications from several authors need to be split
into distinct author entries; author entries that represent the
same entity, but have different names, need to be joined [9].
In contrast to other work that focuses on artificially injected
errors [10] or specific groups of names [5, 7], we want to
handle the actual DBLP problems on a larger scale. We
constructed our data set from cleaned parts of DBLP, where
different aliases for a person are known or ambiguous names
have been resolved. In DBLP, cleaning is done manually
(due to author requests) and automatically (using fine-tuned
heuristics) [9].

247

0 82
0.84
0.86
0.88

0.9
0.92
0.94
0.96

F-
m
ea
su
re

0.8
0.82

Logistic Regression Decision Tree SVM
No frequencies
(similarities only)

Frequency-
enriched
models

Equi-depth
partitioning

Greedy
partitioning

Random
partitioning
(best of 50)

Genetic
partitioning
(50 iterations)

Figure 2: Comparison of frequency approaches and
partitioning strategies for DBLP data set

Preparation. We created a new data set consisting of
paper reference pairs that can be assigned to the following
categories: (1) Two papers from the same author, (2) Two
papers from the same author with different name aliases
(e. g., with/without middle initial), (3) Two papers from
different authors with the same name, (4) Two papers from
different authors with different names.

For each paper pair, the matching task is to decide
whether the two papers were written by the same author.
The data set contains 2,500 paper pairs per category (10k
in total). This does not represent the original distribution
of ambiguous or alias names in DBLP (where about 99.2 %
of the author names are non-ambiguous), but makes the
matching task more difficult and interesting. We provide
this data set on our website1.

Results. Similar to the previous experiment on the
Schufa data set, we applied 10-fold cross validation to com-
pare the partitioning strategies from Sec. 4.4. The results
in Fig. 2 look similar to the results of the Schufa data set.
Without partitioning, all three machine learning techniques
achieve similar F-measure results of about 0.86.

Incorporating only frequencies into these models (without
partitioning) improves performance only by a small amount.
An exception are decision trees, for which we can measure
a significant improvement. For this data set, the decision
tree algorithm could determine that the frequency attribute
is relevant for the classification task.

From the partitioning strategies, genetic partitioning
clearly outperforms all other strategies with overall F-
measure results of about 0.93. The results show that ran-
dom partitioning is not enough to achieve best results. The
equi-depth and greedy partitioning strategies perform worse
than the other partitioning strategies, but still better than
the no-partitioning approach without frequencies. For this
data set, too, partitioning always improves the results.

Overall, we can measure a significant improvement by ge-
netic partitioning of about 9 %, which is larger than the
improvement on the Schufa data set. Our experiments show
that our approach works on different data sets, but that the
actual amount of improvement depends on the data set.

6. CONCLUSION
With this paper, we introduced a novel approach for im-

proving composite similarity measures. We divide a data
set consisting of record pairs into partitions according to
frequencies of selected attributes. We learn optimal simi-

1http://www.hpi-web.de/naumann/data

larity measures for each partition. Experiments on different
real-world data sets showed that partitioning the data can
improve learning results and that genetic partitioning per-
forms better than several other partitioning strategies.

Acknowledgments
We thank Schufa Holding AG for supporting this work.
We especially thank Stephan Springob, Boris Zerban, and
Michael Stolz for their valuable input. In addition, we are
grateful to Tobias Vogel for fruitful discussions and Arvid
Heise for his help on preparing the DBLP data set.

7. REFERENCES
[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone.

Genetic Programming – An Introduction; On the
Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, San Francisco, CA, USA,
Jan. 1998.

[2] I. Bhattacharya and L. Getoor. Collective entity resolution
in relational data. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1, March 2007.

[3] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In Proc. of the
ACM Intl. Conf. on Knowledge Discovery and Data Mining
(SIGKDD), pages 39–48, Washington, DC, USA, 2003.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 19(1):1–16,
2007.

[5] A. A. Ferreira, A. Veloso, M. A. Gonçalves, and A. H.
Laender. Effective self-training author name
disambiguation in scholarly digital libraries. In Proc. of the
Joint Conference on Digital Libraries (JCDL), pages
39–48, Gold Coast, Australia, 2010.

[6] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data mining
software: An update. SIGKDD Explorations, 11, 2009.

[7] H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis.
Two supervised learning approaches for name
disambiguation in author citations. In Proc. of the Joint
Conference on Digital Libraries (JCDL), pages 296–305,
Tuscon, AZ, USA, 2004.

[8] J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

[9] M. Ley. DBLP – some lessons learned. Proc. of the VLDB
Endowment, 2(2):1493–1500, 2009.

[10] V. Rastogi, N. N. Dalvi, and M. N. Garofalakis. Large-scale
collective entity matching. Proc. of the VLDB Endowment,
4(4):208–218, 2011.

[11] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proc. of the ACM Intl. Conf. on
Knowledge Discovery and Data Mining (SIGKDD), pages
269–278, Edmonton, Alberta, Canada, 2002.

[12] W. Shen, P. DeRose, L. Vu, A. Doan, and
R. Ramakrishnan. Source-aware entity matching: A
compositional approach. In Proc. of the Intl. Conf. on Data
Engineering (ICDE), pages 196–205, Istanbul, Turkey,
2007.

[13] V. I. Torvik and N. R. Smalheiser. Author name
disambiguation in MEDLINE. ACM Transactions on
Knowledge Discovery from Data (TKDD), 3:11:1–11:29,
July 2009.

[14] M. Weis, F. Naumann, U. Jehle, J. Lufter, and H. Schuster.
Industry-scale duplicate detection. Proc. of the VLDB
Endowment, 1(2):1253–1264, 2008.

[15] W. E. Winkler. The state of record linkage and current
research problems. Technical report, Statistical Research
Division, U.S. Census Bureau, 1999.

248

