
Searchable Web Sites Recommendation

Yang Song
Microsoft Research
One Microsoft Way

Redmond, WA
yangsong@microsoft.com

Nam Nguyen
Microsoft Corp.

One Microsoft Way
Redmond, WA

namn@microsoft.com

Li-wei He
Microsoft Research
One Microsoft Way

Redmond, WA
lhe@microsoft.com

Scott Imig
Microsoft Corp.

One Microsoft Way
Redmond, WA

scottim@microsoft.com

Robert Rounthwaite
Microsoft Research
One Microsoft Way

Redmond, WA
robertro@microsoft.com

ABSTRACT
In this paper, we propose a new framework for searchable
web sites recommendation. Given a query, our system will
recommend a list of searchable web sites ranked by rele-
vance, which can be used to complement the web page re-
sults and ads from a search engine. We model the condi-
tional probability of a searchable web site being relevant
to a given query in term of three main components: the
language model of the query, the language model of the
content within the web site, and the reputation of the web
site searching capability (static rank). The language models
for queries and searchable sites are built using information
mined from client-side browsing logs. The static rank for
each searchable site leverages features extracted from these
client-side logs such as number of queries that are submit-
ted to this site, and features extracted from general search
engines such as the number of web pages that indexed for
this site, number of clicks per query, and the dwell-time that
a user spends on the search result page and on the clicked
result web pages. We also learn a weight for each kind of
feature to optimize the ranking performance. In our exper-
iment, we discover 10.5 thousand searchable sites and use 5
million unique queries, extracted from one week of log data
to build and demonstrate the effectiveness of our searchable
web site recommendation system.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Search process

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Query Length

C
lic

k−
Th

ro
ug

h
R

at
e

1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Query Length

C
lic

k−
Th

ro
ug

h
R

at
e

General Search Engine
etsy.com

General Search Engine
imdb.com

Figure 1: Comparison of Click-Through Rate (CTR)
of a general search engine and site search. Searching
in web sites directly results in significantly higher
CTRs.

Keywords
Vertical Search Engines

1. INTRODUCTION
In addition to popular general search engines such as Google,

Bing and Yahoo, many commercial and non-commercial web
sites offer searching capability for specialized content: e.g.
imdb.com for movie-related topics, webmd.com for health-
related questions, walmart.com for things to buy, etc. Even
though general search engines are able to index a tremen-
dous number of web pages and have increasingly sophisti-
cated ranking algorithms, performing searches on web sites
directly often have distinct advantages:

• Search engines may have no or limited access to pro-
prietary content or database;

• More domain-specific information can be used for rank-
ing the results. For example, given a query ”pinot
noir”, a wine web site might return the wines ranked
by taste score, price or both;

• The search results are often presented with a more
appropriate format or user interface;

• Since each web site usually focuses on a specific do-
main, the user has to do less filtering of totally unre-
lated results.

405

Figure 2: Given a query handmade dolls, our proposed interface recommends list of links to most relevant
searchable sites. Clicking on the link directs the user to the search result page of a recommended site of the
query handmade dolls.

Figure 1 demonstrates the click-through rates (CTR) of
imdb.com and etsy.com as compared to a general search en-
gine. For the same set of queries, users are much more likely
to make clicks when they issue queries on domain-specific
web sites than on a general search engine. The problem is:
users often do not know which domain-specific sites to go
to. Therefore, our goal in this paper is to discover, rank and
recommend relevant searchable web sites to users. Figure 2
demonstrates an example of proposed interface, where the
searchable web sites are listed on the right-hand side of reg-
ular search results. Clicking on the link directs the user to
the search result page of a recommended site of the query
handmade dolls with much richer content information and
ranking capability.

In recent years, there has been much attention to the prob-
lem of user intent classification in information retrieval [15,
12, 11, 7, 13, 2, 5, 10, 19]. Previous works focus on cate-
gorizing a given query into a general intent such as news,
image, autos and so on, which can be identified as macro
vertical/intent selection. For example, in [2], the authors
empirically selected 18 topics and trained 19 binary classi-
fiers for query categorization. The reason for previous ap-
proaches to pick only high-level categories is because most of
them belong to supervised learning methods, which require
careful human-labeling of training data. e.g., in [2], 25,000
queries are labeled by human judgers. These approaches are
thus very expensive and unable to make prompt response to
topic evolution over time.

Compared to existing approaches, the novelty of our method
is twofold. First, instead of using queries from server-side
search engine logs, we are among the first to leverage user
queries from client-side browsing logs of a widely-distributed
web browser. The client-side logs offer a rich set of informa-
tion which can be leveraged for site activity detection. e.g.,
in-site queries, dwell-time on a page, user click sequence,
unique number of users on a site and so on.

Secondly, we use a completely unsupervised approach for
searchable site recommendation. Our method does not in-
volve hand-labeling of any data or features. The model is
capable of automatically extracting features from logs and

learning optimal weights for each feature. With the abil-
ity to adapt itself, our method can continuously refine the
model over time and therefore scale well with terabytes of
data per day.

Specifically, this paper makes the following contributions:

• Using a simple pattern matching approach, we are able
to discover more than 10,000 searchable web sites from
one-week’s client-browsing logs. Overall, users submit-
ted more than 5 million queries to these sites with over
20 million click activities.

• Given a set of extracted features, a Bayesian language
model is proposed for site selection, which models the
conditional probability of a site being relevant to a
given query and outputs a ranked list of relevant sites.

• An effective query expansion technique is proposed to
model the conditional probability of words being rele-
vant to a given query, which successfully alleviates the
sparseness issue during model learning and exhibits
significant improvement in recommendation quality.

• Empirical results on one-week’s browsing log demon-
strate the effectiveness of our proposed method in a
large-scale setting where there are thousands of search-
able web sites and millions of queries.

The rest of the paper is organized as follows. Section 2
discusses related work for the problem of intent classifica-
tion. Section 3 describes the data collection procedure and
the web site discovery method. Section 4 introduces our
learning framework for the searchable site recommendation
problem and our proposed solution. Section 5 describes our
data preparation as well as the experiment setup and re-
sult. Finally, we discuss some advantages of our approach
and give the concluding remarks in Section 6 and Section 7,
respectively.

2. RELATED WORK
There is a large body of recent work on the problem of

user intent classification. Here we simply highlight some of

406

Table 1: The key differences between our approach and previous arts.
Previous Works Our Work

Cost of learning Mainly supervised approach, Completely unsupervised model
- hand-labeled queries for binary classification [2] - automatic feature extraction
- used Wikipedia categories for query intent [13] - scale up to Terabyte of data

Granularity of Limited number of verticals Large number of potential searchable sites
the model - focused on topic level macro verticals - drilled down to individual sites

- maximum reported number is 18 [2] - discovered more than 10,000 sites
Data source Mainly search engine click logs Client-side browsing logs

- Only click-level features - complete browsing trails with many features

the more relevant works. In [13], the authors addressed the
problem of query intent classification by leveraging the con-
cepts defined by Wikipedia as a representation space. Each
intent domain is represented as set of Wikipedia articles and
categories. For each intent, the authors first identified a few
Wikipedia categories that belong to the intent. Secondly,
the initial set of categories is extended by applying random
walk on the predefined Wikipedia link graph. The intent of
any input query is determined by searching for the closest
match in the Wikipedia representation space. In compari-
son to our approach, the method proposed by [13] requires
hand-labeled data for each intent, hence it is not effective to
apply to a large-scale system with thousands of intents.

In [2], the authors addressed the problem of vertical selec-
tion, predicting a relevant vertical (if any) for a given query.
The proposed method first constructs a feature representa-
tion for each query based on three sources of evidence: (1)
the query string, from which features are derived indepen-
dent of external resources, (2) logs of queries previously is-
sued directly to the vertical, and (3) corpora representative
of vertical content. Secondly, the method learned a binary
classifier for each of the 18 different verticals and one ad-
ditional classifier to indicate no relevant verticals by using
about 25 thousand hand-labeled training queries. In com-
parison to our approach, the method proposed by [2] also
needs a large amount of hand-labeled training data in order
to be effective. Moreover, the authors only experimented
with 18 verticals versus thousands of searchable sites in our
experiment. In addition, in [11], the authors extended the
vertical selection problem to incorporate user feedback.

In [15], the authors proposed a method to improve perfor-
mance of query intent classifiers by taking advantage of click
graphs. In this work, the method infers class memberships
of unlabeled queries from those of labeled ones according to
their proximities in a click graph. The authors also regular-
ized the inferred labeled with click graphs by content-based
classification to avoid propagating erroneous labels. Similar
to our approach, [15] is able to exploit the query-vertical re-
lationship in the user log data via the click graphs to expand
the amount of training data. However, the proposed method
still need some labeled training examples for each intent and
the paper only experiments with two different intents: job
intent and product intent.

In [12], the authors proposed an unsupervised learning
method to the problem of query categorization. The model
is stored as a graph of concepts where graph edges represent
the cross-reference between the concepts. Similar to our ap-
proach, the authors used a general search engine to build the
concepts and their relations. To determine the category of a
new query, the proposed method first discovers the relevant

nodes in the concept graph which then can be used to map
the query to the related category.

In [7], the authors surveyed and evaluated some of the
query intent detection methods on three main underlying
intents, namely navigational, informational, and transac-
tional. Even though the work does not include some of the
more recent methods on vertical selection, it does point out
an important issue about evaluation method. In our experi-
ment, with the lack of manually prepared gold-standard la-
beled query-intent data, we has proposed an empirical eval-
uation method based on the user log data.

[8] is an application of query intent detection. In [8], the
authors proposed a method for bidterm suggestion based on
the query intent. The proposed method models an adver-
tiser’s intent and finds new bidterms consistent with that
intent.

In [6], the author demonstrated the importance of the spe-
cialized vertical search engines in term of retrieval task. [6]
identified domain-specific search strategies in the healthcare
and shopping categories and showed that expert knowledge
is not automatically obtained from using general purpose
search engines.

As an alternative approach, [17] proposed a method to
crawl and index the Deep-Web content. Searchable web sites
are a significant portion of the Deep-Web since they usually
only provide search HTML form to query their content. In
[17], the authors presented an algorithm for selecting input
values for text search inputs that accepts keywords and an
algorithm for identifying inputs which accept only values of
a specific type. A similar approach was taken by [4] where
a two step filtering algorithm was used to discover relevant
online databases (forms). On the other hand, authors in [9]
built a keyword-based decision tree to discovery searchable
webpages. The rules and keywords in decision tree are fixed
and cannot be adjusted to individual pages easily. In com-
parison to our approach, [17], [4] and [9] require tremendous
amount of computing power as well as prior domain knowl-
edge and does not take advantage of users’ knowledge. Thus,
large searchable web sites could take very long time to crawl
and index.

In Table 1, we summarize some characteristics of previous
work that we are addressing in this paper.

3. DATA COLLECTION
First, we describe the format of the data that is used to

learn our model. The log data used in this paper is the client-
side browsing log collected from millions of opt-in users of a
world-wide distributed browser. In the log data, we record
all users’ activities within the browser. For each user, the ac-
tivities are divided into sessions if there is no activity within

407

Table 3: The most commonly used query parameters
for searchable web sites.
Parameter Examples
query= webmd.com/default.aspx?query=Tdap
q= imdb.com/find?q=transformers
keywords = overstock.com/search?keywords=boots
keyword = footlocker.com/?keyword=running+shoes
SearchTerm= bebo.com/SearchTerm=mj
st= washingtonpost.com/Search?st=h1n1
w= clothing.bodenusa.com/search?w=bags
terms = herroom.com/Search2?terms=mens+bra
searchtext= www.igigi.com/?searchtext=weekend+clothes
qt= search.ama-assn.org/qt=flu+shot

30 minutes. Each activity in a session records the following
information1: unique user id, clicked url, referred url, IP
address, time stamp and the sequential order within a ses-
sion (vis seq). All activities within a session are organized
according to their time stamps. Specifically, the referred
url is the one that current url is clicked from. Therefore,
by following the referrer urls, we can further separate the
user activities into different trails which can be recognized
as user tasks. For example, a user may open a tab of the
browser to read news while checking emails in another. For
the purpose of this paper, we divide the tasks into search
trails and non-search trails. An example of these two trails
are shown in Table 2, where the top trail shows user search
on a general search engine and the bottom on a more spe-
cialized web site. For discovering potential searchable sites
which are unknown (or ranked lower than popular sites) by
general search engines, it makes sense to leverage only the
non-search trails from the logs.

A simple pattern matching rule is used to extract queries
from clicked URLs in the logs. For most web sites, the
search keywords are passed as parameters in URLs such
as “query=”. Different parameters are separated using “&”
character. In this paper, we only focus on the most discrim-
inative parameter for each specialized engine. So for a URL
containing two parameters “query=audo+a6&zip=98034”,
only the “query” part is extracted. In this paper, a set of
126 manually extracted patterns are used. The determina-
tion of the most relevant parameter is beyond the scope of
this paper. In Table 3, we summarizes the most commonly
used search keywords.

Overall, we collected one-week’s browsing log from July
1 to July 7 2009 for training purpose. The data is over 20
Terabytes, with a total of 5 billion web page clicks. Fig-
ure 3 plots the transition probability between search engine
result pages (SERP) and common web pages (URLs). Com-
paring to over 86% of times which users browse from one
page to another, the search activity is only a tiny part of
the client-side log. Using our simple pattern matching cri-
teria, we were able to discover 10,546 potentially searchable
sites. The total unique queries submitted to sites directly
are over 5 million. Noticeably, we intentionally removed a
few dozen well-known searchable sites from our list (includ-
ing youtube.com, ebay.com, craigslist.org and so on). We
choose not to recommend them because they are so popular

1There are many other unrelated fields that are also
recorded. As a preliminary study, we only utilize these meta
features.

Figure 3: The transition probability between two
states: search engine result pages (SERP) and com-
mon URLs (URLs). The self transition probability
of URLs consists the majority of user web browsing.

Table 4: Top 10 frequently searched web sites ac-
cording to query frequency.

Web Site Total Searches Total Clicks
www.indeed.com 824543 2734716
www.walmart.com 505516 1715079
www.flickr.com 416617 1615179
www.imdb.com 393710 1367888
www.hulu.com 351040 1342549
www.myxer.com 341967 1239722
www.amazon.com 304055 868667
www.etsy.com 294507 597705
www.linkedin.com 285228 1057392
mp3.zing.vn 267627 860819

that most general search engines have already performed a
good job of recommending these sites when relevant queries
are issued, so that we concentrate on the less popular ones
in this paper, because generally people have more trouble
finding these sites. Saying this, the performance of these
top web sites will be discussed in the Discussion section to
favor our proposed technique.

Table 3 lists the top searched sites according to query
frequency. The topics of discovered web sites cover the most
macro verticals addressed in previous works [2].

4. RECOMMENDATION FRAMEWORK
In contrast to previous work, we model the searchable

web site recommendation as a ranking problem instead of
classification. Given a query, our system provides a ranked
list of best-matched searchable web sites. In order to model
the conditional probability of engines given queries, we con-
struct a set of features that can be automatically extracted
from the logs.

4.1 Feature Generation
The first step of feature generation is to extract searchable

web sites as well as the user queries. Specifically, we extract

• A set of web sites users issued queries to, denoted as
V .

• A set of queries per web site, denoted as Qv for a site
v ∈ V .

A set of seven descriptive features for each searchable site
are constructed. These features are used to estimate the

408

Table 2: An example of user search trails on general search engines (Top) and a searchable web site. (Bottom).
userid clicked url referred url vis seq local time

UID www.bing.com - 1 10:10:17.281-04:00
UID www.bing.com/search?q=dolls www.bing.com 2 10:10:54.531-04:00
UID karenskids.homestead.com www.bing.com/search?q=dolls 3 10:11:20.484-04:00
UID www.craftsfaironline.com/Dolls.html www.bing.com/search?q=dolls 4 10:11:27.953-04:00
UID www.bing.com/search?q=cheap+dolls - 5 10:11:36.390-04:00
UID american-doll-clothes.com www.bing.com/search?q=cheap+dolls 6 10:11:58.187-04:00

...
UID www.etsy.com/ - 15 10:40:43.515-04:00
UID www.etsy.com/search query=dolls www.etsy.com/ 16 10:40:48.578-04:00
UID www.etsy.com/listing id=32079621 www.etsy.com/search query=dolls 17 10:41:20.125-04:00
UID www.etsy.com/listing id=33551504 www.etsy.com/search query=dolls 18 10:41:45.343-04:00
UID www.etsy.com/cartcheckout?id=33551504 www.etsy.com/listing id=33551504 19 10:41:50.109-04:00

reputation of each web site’s searching capability, which is
different from simply the site’s PageRank. Instead, they
measure how much people use the site’s search feature and
how satisfied they are after each use.

1. the total number of queries submitted to the site (the
cardinality of Qv), denoted as queries(v), which indi-
cates the popularity of the site’s search feature,

2. the number of unique queries submitted to the site,
denoted as unique queries(v), which is a measure of
the popularity and topic coverage of the site’s search
feature,

3. the average number of clicks per query on site v, de-
noted as clicks(v), which helps identify whether the
user’s information need is satisfied,

4. the average dwell-time on the search result page per
query on v, denoted as dt1(v), which helps to access
the quality of the result links,

5. the average dwell-time on the referred links per query
on v, denoted as dt2(v), which helps to measure the
quality of the retrieved information,

6. the number of web pages belonging to the site that are
indexed by a general search engine, denoted Index(v),
which is an approximation of the quantity of web pages
within v, and

7. the entropy of the topic distribution based on the Open
Directory Project’s (ODP) hierarchy of the web [1], de-
noted entropy(v), which measures the diversity of the
site’s content. Specifically, to compute the ODP-topic
distribution entropy for each specialized vertical search
engine, we utilize the one-versus-all binary classifiers
from 219 most popular topics from the ODP hierarchy.
The conditional probability of a ODP topic t given a
vertical search engine v is defined as

P (t|v) =
1

|Qv|
∑

q∈Qv

ft(q
∗), (1)

where ft(q
∗) is the calibrated classification output of

the binary classifier for the ODP-topic t when applying
to the expanded query q∗. Hence, the topic entropy of
a web site is computed as

entropy(v) = −
∑

t

P (t|v) log P (t|v).

Web sites with low entropies are sought to have bet-
ter specialty, while more general web sites often have
higher entropy scores. An example has been shown in
Figure 4 for ESPN and Google, where Google has a
much higher entropy score than ESPN which mainly
focuses on the sport category.

Figure 4: Topic distribution P (t|v) of two sites:
ESPN and Google, where more general search en-
gines have flatter topic distribution thus higher en-
tropy scores.

4.2 Components Breakdown
The recommendation problem can be formulated as the

conditional probability of a searchable web site v given a
query q, P (v|q), as follows:

P (v|q) =
∑

w∈Vocab

P (w, v|q)

=
∑

w∈Vocab

P (w|q)P (v|q, w)

=
∑

w∈Vocab

P (w|q)P (v|w)

=
∑

w∈Vocab

P (w|q)P (w|v)
1

P (w)
P (v) (2)

In this equation, we first introduce a new variable w rep-
resenting the word or term in our vocabulary, which is de-
noted as Vocab. Hence, the first equation is the summation
over all possible values of the variable w of the joint con-
ditional probability, P (w, v|q). In addition, we also make
an assumption that the term w and the query string q rep-
resent redundant information so that P (v|q, w) = P (v|w).
Ideally, queries should be modeled with n-gram language
models with n > 1 while w represents a simple unigram
model. However, since many literature works have shown
that higher order of language models can barely help im-
proving the retrieval performance, we are ignoring the order

409

of the terms within the query string in our work. In our
simplified representation, we believe that the single term w
can effectively explain the information need of a query q in
most scenarios. Finally, we apply the Bayes’ rule for the

conditional probability to get P (v|w) = P (w|v)P (v)
P (w)

.

As can be observed from eq.(2), the conditional probabil-
ity of a searchable site v given a query q can be broken down
into four components: (1) the conditional probability of a
term w given the query q, P (w|q); (2) the conditional prob-
ability of the term w given the searchable site v, P (w|v);

(3) the inverse of the probability of the term w,
1

P (w)
; and

(4) the prior belief or the static rank of the searchable site
v, P (v). In this paper, we leverage language modeling ap-
proaches [22] to each of these four components.

4.2.1 Model P(w|q) via Query Expansion
Given that typical queries submitted to searchable web

sites contain very few keywords [14], we expand each query
q with the snippets of the top-returned results by submit-
ting the query to a general search engine. Since the snippets
on search engine result pages are selected from the most de-
scriptive words of the web page contents, it offers great free
resources for better understanding user intents2, especially
when the queries are ambiguous. Specifically, the titles and
the descriptive words are both leveraged for query expan-
sion (see Figure 5). In this paper, we empirically use top-50
results from a general search engine for query expansion.

We denote the expanded query as q∗. Hence, our condi-
tional probability of a term w given a query q, P (w|q), is
estimated based on the expanded query q∗, P (w|q∗). The
language model of P (w|q∗) is modeled as a multinomial dis-
tribution, for which the conjugate prior for Bayesian analysis
is the Dirichlet distribution [16],

P (w|q) � P (w|q∗) =
tf(w; q∗) + μP (w|C)∑

w′∈Vocab

tf(w′; q∗) + μ
(3)

where μ is the Dirichlet smoothing parameter; tf(w; q∗) is
the term frequency of a term w in the expanded query q∗;
and P (w|C) is the language model for the entire expanded
training query collection,

P (w|C) =
tf(w; C)∑

w′∈Vocab

tf(w′; C)
. (4)

4.2.2 Model P(w|v) and P(w)
In order to model the conditional probability of the term

w given the searchable site v, we utilize the set of queries Qv

containing all submitted queries to the site v. The language
model for a searchable site v, P (w|v), is computed as the
average of all language models of the queries,

P (w|v) =
1

Z

∑
q∈Qv

P (w|q)I(# of click(v, q) > 0) (5)

where Z =
∑

q∈Qv

I(# of click(v, q) > 0) is a normalizing con-

stant. In this formula, we only include queries whose search

2Similarly, in [13] the authors also used Wikipedia as an
external source for representation of the query intent.

Figure 5: The snippets (circled) of search engine
result pages are leveraged for query expansion.

results are clicked on, as denoted in the indicator function I
of the denominator of Z. Since the queries extracted from
each searchable site usually contain some noisy queries that
are not representative of the site content, by formulating
the query language model for each searchable site with only
clicked queries, we can reduce the amount of noisy queries
significantly. In addition, our formulation of the site does
not require direct sampling from the site itself as in [2], which
can reduce tremendously the amount of computational ef-
fort. This site-level formula can also been maintained and
updated per site basis, which is very flexible and can there-
fore updated in real time (will be discussed shortly).

For the third component in eq.(2),
1

P (w)
is modeled as

the inverse document frequency (idf) [18],

1

P (w)
∝ log

N

|{q∗ : w ∈ q∗}| (6)

where N is the total number queries in the training collec-
tion. As it is well-known, idf is able to assign higher weights
to terms concentrated in a few documents of a collection
rather than more general terms.

4.2.3 Optimize P(v) by Linear Feature Combination
Finally, we utilize the set of seven informative features

that are collected for each searchable site to model the static
rank of v, P (v). The prior probability P (v) is formulated
as a weighted normalized linear combination of the seven
collected features,

P (v) = w1
log[queries(v)]∑

v′∈V

log[queries(v′)]

+ w2
log[unique queries(v)]∑

v′∈V

log[unique queries(v)]

+ w3
clicks(v)∑

v′∈V

clicks(v′)
+ w4

dt1(v)∑
v′∈V

dt1(v′)

+ w5
dt2(v)∑

v′∈V

dt2(v′)
+ w6

Index(v)∑
v′∈V

Index(v′)

+ w7
1/entropy(v)∑

v′∈V

1/entropy(v′)
. (7)

410

In order to learn the optimal weight [w1, . . . , w7], we use the
Simultaneous Stochastic Approximation (SPSA) algorithm
proposed by [21, 20] as our gradient approximation method
for non-convex objective function, since it is very efficient
and requires only two objective function evaluations per it-
eration for gradient approximation. Here, we briefly review
the SPSA algorithm (for the complete description of the al-
gorithm referred to the work by Spall [21, 20]). In each
iteration, a simultaneous perturbation vector Δk ∈ Rd is
generated according to the following conditions stated in
[20]: Δk is a vector of d mutually independent mean-zero
random variables (Δk1, Δk2, . . . , Δkd) satisfying |Δkl| ≤ α0

almost surely and E|Δ−1
kl | ≤ α1 for some finite α0 and α1.

As suggested in [21], each Δkl can be generated from the
symmetrically Bernoulli distribution (+1 or −1 with equal
probability). Given Δk, the gradient approximation is com-
puted as,

ĝk(wk) =

⎡
⎢⎢⎣

1/Δk1

1/Δk2

. . .
1/Δkd

⎤
⎥⎥⎦ · L(wk + ckΔk) − L(wk − ckΔk)

2ck
(8)

where L(·) is the objective function to be optimize. In our
framework, we set the objective function L(w) to be the
accuracy performance of our system which is described in
the experiment section. In addition, the parameters of the
learning algorithm are set as the suggested values as in [21].

In summary, the task of searchable web site recommen-
dation is formulated as a probabilistic model, P (v|q). The
conditional probability of a searchable web site v given a
query q is computed in term of four components: (1) the
query language model, P (w|q); (2) the web site language
model, P (w|v); (3) the inverse document frequency, 1

P (w)
;

and (4) the static rank, P (v).

4.2.4 Online Recommendation
In Figure 6, we show that our framework of searchable

web site recommendation can be incorporated into an on-
line setting. Given the current client browser log data, the
system extracts potential searchable web sites and submit-
ted queries which then are used to construct the language
models for the queries and web sites. When users issue new
queries, the system proposes a ranked list of suitable search-
able web sites. At this point, new client browser log data
can be collected and use as feedback to update our language
models. This continuous effort can further prune and refine
the model on a daily basis, without any human involvement.

5. EXPERIMENT
In this section, we empirically analyze the performance of

the proposed framework. We first introduce the performance
metrics. We then describe in details our experimental setup.
Finally, we present the empirical results.

5.1 Experiment Setup and Result
Due to the novelty of the problem of recommending search-

able web sites, there is no existing benchmark test data for
this task. Ideally, in order to evaluate the performance of our
system, we would need a ranked list of best matched search-
able web sites for each test query. However, the benchmark
data would require time-consuming human-labeling effort.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Top K Sites

A
c
c
u

ra
c
y

Strong Baseline: Smoothed Language Model
Using Query Expansion by SERP Snippets

Figure 7: Accuracy of top-K sites with K = 1 to
10. Using query expansion increases performance
significantly than using query string itself [22].

In our experiment, we first extracted all queries issued di-
rectly to the web sites during a two-week period in the client
side log. We use the first week of the log for training our sys-
tem and the second week for testing. We select those novel
test queries from the second week that have never appeared
in the training set. Given a set of queries and the sites that
they were issued to, QV = {(q1, v1), (q2, v2), . . . , (qn, vn)},
the accuracy of the system with respect to the top K rec-
ommended sites is computed as

Accuracy(QV, K) =
1

n

n∑
i=1

IK(qi, vi), (9)

where

I(q, v) =

{
1 v ∈ TopVerticalK(q)
0 otherwise

(10)

where TopVerticalK(q) is the set top K verticals returned by
the ranking system. For simplicity, we model the query and
the web site language model with uni-gram vocabulary. In
our experiment, we first compare the performance of query
expansion using search result snippets with query string it-
self.

Because of the novelty of our data source and feature
construction method, it is unable to compare with exist-
ing supervised methods [2] or methods that require external
knowledge [13]. A fair comparison should be made to unsu-
pervised language models. Consequently, we built a strong
baseline approach which is a smoothed language model re-
ported as the best model in [22]. In Figure 7, we plot the
accuracy performance of our system with and without the
use of query expansion, with K from 1 to 10. As the figure
clearly demonstrates, query expansion with snippets gives
significantly better performance across different top recom-
mended searchable web sites. On average, the query expan-
sion improves the accuracy by 240%.

In the second series of experiments, we demonstrate how
different weighting scheme for the prior probability P (v) ef-
fects the overall performance of our recommendation frame-
work.

5.1.1 Constant Prior vs. Uniform Weighting
In Figure 8, we investigate the constant prior and the

uniform weighting scheme. In the constant prior scheme,
we set P (v) ∝ 1, meaning that the prior probability is the
same for all sites. While in the uniform weighting, we set
w1 = · · · = w7 = 1, so that each of the seven features

411

Figure 6: The framework of online searchable web site recommendation.

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Top K Engines

A
c
c
u

ra
c
y

Constant Piror
Uniform Weighting

P(v) = 1

w
1
...w

7
 = 1

Figure 8: Constant prior vs. uniform feature weight-
ing. Result indicates that the features extracted for
P (v) is performs significantly better than constant
prior for all searchable web sites.

are treated equally. However, P (v) could be different for
different sites in this case. We observe that our system using
uniform weighting performs significantly better than the one
with constant prior. The conclusion from this experiment
is that the extracted features for each searchable web site
provide discriminative information to our ranking system,
which is better than simply treating all searchable sites with
equal importance.

5.1.2 Individual Feature Comparison
Now we investigate how much each of these features con-

tributes to the overall performance of our recommendation
system. In Figure 9, we plot the performance of different
weighting schemes for the static ranking which assign wi = 1
for the ith feature and wj = 0 (j �= i) for all other features
as in eq.(2). We observe that the features are clustered into
3 groups. First, we observe that static rankings which uti-
lize number of queries, number of unique queries, or num-
ber of clicks all produce similar results to each other and
outperform the uniform weighting scheme. We also observe
that static rankings utilizing dwell-times on the search result
page or the referred pages produce similar results to uniform
weighting scheme. Finally, static ranking utilizing entropy
or Index do not make significant difference compared to con-
stant weighting scheme. Hence, we can order the significance
of the features as following: number of queries, number of
unique queries, number of clicks, dwell-time on the search
results, dwell-time on the referred pages, entropy and pages
indexed by search engines.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

Top K Engines
A

c
c
u

ra
c
y

Number of Unique Queries
Number of Queries
Number of Clicks
Dwelltime1
Dwelltime2
Entropy
Index

Figure 9: Accuracy comparison of each individual
features by setting wi = 1 and the rest to be 0.
Number of unique queries is the best feature for
prediction.

Table 5: The optimal feature weights learnt from
SPSA method. The weights do not sum up to 1.

Feature Optimal Weight
Number of queries 0.826578359
Number of unique queries 0.172329984
Number of clicks 0.133643353
Dwelltime 1 0.105575731
Dwelltime 2 0.073425058
Index 0.100119786
Entropy 0.051705972

5.1.3 Optimized Feature Combination
Finally, in Table 6 we list the performance improvement

of the system using the weights trained by the SPSA al-
gorithm. The improvement is calculated by extracting the
best of three (Constant Prior, Uniform Weight and # of
Unique Queries) from the optimal combination. We observe
that the learning algorithm SPSA is able to learn a weight
combination that outperforms other weight schemes signifi-
cantly. The optimal weights for the seven features are listed
in Table 5, the order of which is consistent with what we
observed in Figure 9. Note that since SPSA does not put
normalization constraints on the weights, the summation of
the seven weights is not equal to one. In practice, it does
not affect the static rank P (v) as long as the relative order
of the prior probability is preserved, so that more popular
sites are more likely to be selected.

412

Table 6: Performance improvement of our feature optimization algorithm against other results. The improve-
ment is statistically significant (p-value < 0.001).

K Constant Prior Uniform Weight # of Unique Queries Optimal combination Improvement (%)

1 0.016375719 0.031560226 0.04579501 0.046729602 +0.0934592
2 0.02844877 0.05609423 0.075644265 0.077492018 +0.1847753
3 0.037340215 0.074910143 0.095222939 0.097702723 +0.2479784
4 0.044964793 0.089394504 0.110397625 0.113840474 +0.3442849
5 0.051380278 0.102083795 0.122546001 0.126965808 +0.4419807
6 0.057649957 0.112433304 0.132723569 0.138783011 +0.6059442
7 0.063418942 0.12135501 0.141539634 0.145944035 +0.4404401
8 0.069234695 0.129256071 0.149226056 0.155809357 +0.6583301
9 0.074160478 0.136326309 0.156173763 0.166392706 +1.0218943
10 0.078797399 0.142921989 0.162401625 0.168995215 +0.6593590

6. DISCUSSION ON QUERY EXPANSION
The most effective technique we proposed in this paper is

automatic query expansion using search engine result snip-
pets, which leads to approximately 5% accuracy gain against
constant prior with P (v) = 1 for all sites. In order to show
the necessity of query expansion, we examine the perfor-
mance of a simplified vector matching algorithm in predict-
ing queries at 10 searchable web sites with high query volume
in our data. Specifically, we measure whether queries issued
to a web site in our test data match queries from the training
data in terms of cosine similarity, without using any query
expansion techniques.

For a searchable web site v, we obtain the sets Uv of all
unigrams and Bv of all bigrams in queries issued to v in
our training data, along with frequencies fx,v, where fx,v

denotes the number of occurrences of x ∈ Uv ∪ Bv among
queries submitted to v. For x �∈ Uv ∪Bv, we set fx,v = 0. In
addition, we collect identical information for a general pur-
pose search engine s. We denote the associated unigrams
and bigrams as Us and Bs, and denote the associated fre-
quencies as fx,s for x ∈ Us ∪ Bs.

For a query q with distinct tokens w0, · · · , wn, with fre-
quencies |w0|, · · · , |wn| (where typically every |wi| = 1), we
compute the similarity between the query q and the vertical
v as

cos(q, v) =

∑n
i=1 |wi|fwi,v√∑n

i=1 |wi|2 ∑
x∈Uv∪Bv

f2
x,v

(11)

This cosine metric provides a relative ranking of searchable
web sites suitable for each query. Whenever cos(q, v) is suf-
ficiently greater than cos(q, s), we treat v as a likely match
to the user’s query. Note that this is a canonical document
vector retrieval algorithm based on cosine similarity (c.f. [3])
where, rather than representing a searchable web site v by
the text on the site itself, v is represented by a virtual docu-
ment constructed from all queries issued to v in the training
data.

To measure the performance, we determine which of the
10 high-volume web sites are predicted for each query in
the test data. If a website is predicted for the query and the
query occurs on that site in the test data, it is a true positive
(TP). If the web site is predicted for the query and the site
does not occur for the query, it is a false positive (FP). If the
web site is not predicted for the query, but it occurs for the
query in the test data, it is a false negative (FN). Precision
is computed on a site-by-site basis as TP/(TP + FP) and

recall is computed as TP/(TP + FN). F1 is computed as
the harmonic mean of precision and recall.

Table 7 summarizes the performance for this algorithm,
where v is predicted for q whenever cos(q, v) > 20 cos(q, s).
You Tube performs best in terms of precision, given that
its query volume in the training data is much larger than
the other 9 sites. However, the F1 scores are poor across all
10 web sites, with no F1 score exceeding 50%, and several
falling below 10%. This result indicates that even for popu-
lar searchable web sites, in the absence of large amounts of
data, proper query expansion, or smoothing methods, per-
formance is poor.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new methodology of discov-

ering and recommending searchable web sites from client-
side browsing logs. Our framework utilized automatically
extracted features from the logs to construct a unigram lan-
guage model for site recommendation. We proposed an effi-
cient query expansion technique to address the query sparse-
ness issue by leveraging the search engine result snippets.
Experimental results indicated that with the language model
and query expansion, our framework can significantly im-
prove the recommendation performance than a simple con-
stant prior Bayesian method.

Comparing with previous approaches, our method was the
first-of-a-kind in that (1) the proposal was completely unsu-
pervised, making it capable of handling terabytes of data, (2)
the approach focused on site-level recommendation rather
than topic-level query categorization [2], so that the features
extracted from each site can dynamically adjust at site-level
rather than making dramatic change by adding or remov-
ing categories, (3) the features we used from click-site logs
respect the user perspective of site popularity and thus can
potentially discover valuable sites in which users perform
significant amount of searches, even ahead of the awareness
of general search engines.

There are a lot of future directions. Firstly, we have used
client-side log (queries issued to the web sites directly) to
train and evaluate our recommendation system in an of-
fline experiment. Since our intended use for this system is
to complement the current search engine’s web page results
and ad results, it would be valuable to run online experi-
ments where the users with information need are presented
with the searchable web site recommendations embedded
in the search engine result pages. These experiments will
enable us to evaluate how much value our system adds to

413

Table 7: Performance of a simplified matching algorithm for 10 high-volume web sites. Without query
expansion or smoothing methods, performance is quite poor.

Web Site TP FP TN FN Precision Recall F1 Score

amazon 1817 8644 47000 2294147 0.173693 0.037221 0.061304
etsy 4406 7152 11912 2328138 0.381208 0.270009 0.316114
flickr 1640 8820 35146 2306002 0.156788 0.044582 0.069424
hulu 3034 26849 18609 2303116 0.101529 0.140184 0.117766
imdb 3114 17158 36454 2294882 0.153611 0.0787 0.104078
indeed 10379 1390 21296 2318543 0.881893 0.327672 0.477811
myxer 3317 54719 23873 2269699 0.057154 0.121993 0.07784
target 4640 9034 29954 2307980 0.33933 0.134127 0.19226
walmart 4548 7061 51847 2288152 0.391765 0.080645 0.133757
youtube 80558 815 2058546 211689 0.989984 0.03766 0.072559

the users and how the recommendations interact with other
types of search results. Secondly, many searchable web sites
serve a very niche domain. Incorporating a user’s contex-
tual information, such as location, query history and time
of day, would allow us to recommend the web sites much
more accurately. For example, if the user queries a book
title, a link to search his local community library would be
a nice complement to the usual web results. Thirdly, in the
current system, we assume that the language models of the
queries issued to the general search engine and to the web
site directly are the same. A user may issue ”britney spears
video” to a general search engine but simply ”britney spears”
to Youtube. A study of the language model difference would
allow us transform the user query to a more appropriate site-
specific query. Finally, our searchable web site discovery
algorithm only handles keyword-based search sites. Many
sites offer structured search. For example, Southwest Air-
line’s web site allows the user to search flights by different
options. Understanding the structured search URL auto-
matically and transforming the user’s keyword-based query
to a structured site-specific search URL would be a promis-
ing future direction.

8. REFERENCES
[1] Netscape communication corporation. open directory

project. http://www.dmoz.org.
[2] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources of

evidence for vertical selection. In The 32nd Annual
International ACM Conference on Research and
Development in Information Retrieval (SIGIR09), 2009.

[3] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[4] L. Barbosa and J. Freire. Combining classifiers to identify
online databases. In WWW ’07, pages 431–440, 2007.

[5] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury,
and O. Frieder. Automatic classification of web queries
using very large unlabeled query logs. ACM Trans. Inf.
Syst., 25(2):9, 2007.

[6] S. K. Bhavnani. Domain-specific search strategies for the
effective retrieval of healthcare and shopping information.
In Conference on Human Factors in Computing Systems,
pages 610–611, 2002.

[7] D. J. Brenes, D. Gayo-Avello, and K. Perez-Gonzalez.
Survey and evaluation of query intent detection methods.
In The Workshop on Web Search Click Data (WSCD09),
2009.

[8] W. Chang, P. Pantel, A.-M. Popescu, and E. Gabrilovich.
Towards intent-driven bidterm suggestion. In WWW ’09,
pages 1093–1094, 2009.

[9] J. Cope, N. Craswell, and D. Hawking. Automated
discovery of search interfaces on the web. In ADC ’03,
pages 181–189, 2003.

[10] F. Diaz. Integration of news content into web results. In
WSDM ’09, pages 182–191, New York, NY, USA, 2009.
ACM.

[11] F. Diaz and J. Arguello. Adaptation of offline vertical
selection predictions in the presence of user feedback. In
The 32nd Annual International ACM Conference on
Research and Development in Information Retrieval
(SIGIR09), 2009.

[12] E. Diemert and G. Vandelle. Unsupervised query
categorization using automatically-built concept graphs. In
The 19th International World Wide Web
Conference(WWW09), pages 461–470, 2009.

[13] J. Hu, G. Wang, F. Lochovsky, J.-T. Sun, and Z. Chen.
Understanding user’s query intent with wikipedia. In The
19th International World Wide Web
Conference(WWW09), pages 471–480, 2009.

[14] B. J. Jansen, A. Spink, and T. Saracevic. Real life, real
users, and real needs: a study and analysis of user queries
on the web. Information Processing & Management,
36(2):207–227, March 2000.

[15] X. Li, Y.-Y. Wang, and A. Acero. Learning query intent
from regularized click graphs. In SIGIR08, pages 339–346,
2008.

[16] D. J. C. Mackay and L. C. B. Peto. A hierarchical dirichlet
language model. Natural Language Engineering,
1(1):289–307, 1995.

[17] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen,
and A. Halevy. Google’s deep web crawl. Proceedings of the
VLDB Endowment, 1(2):1241–1252, 2008.

[18] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Information Processing and
Managment, 24(5):513–523, 1988.

[19] D. Shen, J.-T. Sun, Q. Yang, and Z. Chen. Building bridges
for web query classification. In SIGIR ’06, pages 131–138.
ACM, 2006.

[20] J. C. Spall. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
Transactions on Automatic Control, 37:332–341, 1992.

[21] J. C. Spall. Implementation of the simultaneous
perturbation algorithm for stochastic approximation. IEEE
Transactions on Aerospace and Electronic Systems,
34:817–823, 1998.

[22] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to information retrieval. ACM
Transactions on Information Systems, 22(2):179–214, April
2004.

414

