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ABSTRACT
How to organize and present search results plays a critical
role in the utility of search engines. Due to the unprece-
dented scale of the Web and diversity of search results, the
common strategy of ranked lists has become increasingly in-
adequate, and clustering has been considered as a promising
alternative. Clustering divides a long list of disparate search
results into a few topic-coherent clusters, allowing the user
to quickly locate relevant results by topic navigation. While
many clustering algorithms have been proposed that inno-
vate on the automatic clustering procedure, we introduce
ClusteringWiki, the first prototype and framework for per-
sonalized clustering that allows direct user editing of the
clustering results. Through a Wiki interface, the user can
edit and annotate the membership, structure and labels of
clusters for a personalized presentation. In addition, the
edits and annotations can be shared among users as a mass-
collaborative way of improving search result organization
and search engine utility.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval – Clustering
General Terms: Algorithms, Design, Human Factors
Keywords: Personalized clustering, Search result cluster-
ing, Search result organization, Document clustering, Wiki,
Mass collaboration, Social tagging, Information retrieval

1. INTRODUCTION
The way search results are organized and presented has a

direct and significant impact on the utility of search engines.
The common strategy has been using a flat ranked list, which
works fine for homogeneous search results.
However, queries are inherently ambiguous and search re-

sults are often diverse with multiple senses. With a list
presentation, the results on different sub-topics of a query
will be mixed together. The user has to sift through many
irrelevant results to locate those relevant ones.
With the rapid growth in the scale of the Web, queries

have become more ambiguous than ever. For example, there
are more than 20 entries in Wikipedia for different renown
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individuals under the name of Jim Gray and 74 entries for
Michael Smith as of today. Consequently, the diversity of
search results has increased to the point that we must con-
sider alternative presentations, providing additional struc-
ture to flat lists so as to effectively minimize browsing effort
and alleviate information overload [12, 25, 34, 5]. Over the
years clustering has been accepted as the most promising
alternative.

Clustering is the process of organizing objects into groups
or clusters that exhibit internal cohesion and external iso-
lation. Based on the common observation that it is much
easier to scan a few topic-coherent groups than many in-
dividual documents, clustering can be used to categorize a
long list of disparate search results into a few clusters such
that each cluster represents a homogeneous sub-topic of the
query. Meaningfully labeled, these clusters form a topic-wise
non-predefined, faceted search interface, allowing the user to
quickly locate relevant and interesting results. There is good
evidence that clustering improves user experience and search
result quality [23].

Given the significant potential benefits, search result clus-
tering has received increasing attention in recent years from
the communities of information retrieval, Web search and
data mining. Many clustering algorithms have been pro-
posed [12, 25, 34, 35, 36, 20, 32, 21]. In the industry,
well-known cluster-based commercial search engines include
Clusty (www.clusty.com), iBoogie (www.iboogie.com) and
CarrotSearch (carrotsearch.com).

Despite the high promise of the approach and a decade
of endeavor, cluster-based search engines have not gained
prominent popularity, evident by Clusty’s Alexa rank [13].
This is because clustering is known to be a hard problem,
and search result clustering is particularly hard due to its
high dimensionality, complex semantics and unique addi-
tional requirements beyond traditional clustering.

As emphasized in [32] and [5], the primary focus of search
result clustering is NOT to produce optimal clusters, an ob-
jective that has been pursued for decades for traditional clus-
tering with many successful automatic algorithms. Search
result clustering is a highly user-centric task with two unique
additional requirements. First, clusters must form interest-
ing sub-topics or facets from the user’s perspective. Second,
clusters must be assigned informative, expressive, meaning-
ful and concise labels. Automatic algorithms often fail to ful-
fill the human factors in the objectives of search result clus-
tering, generating meaningless, awkward or nonsense cluster
labels [5].

In this paper, we explore a completely different direc-
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Figure 1: Snapshot of ClusteringWiki.

tion in tackling the problem of clustering search results,
utilizing the power of direct user intervention and mass-
collaboration. We introduce ClusteringWiki, the first pro-
totype and framework for personalized clustering that allows
direct user editing of the clustering results. This is in sharp
contrast with existing approaches that innovate on the au-
tomatic algorithmic clustering procedure.
In ClusteringWiki, the user can edit and annotate the

membership, structure and labels of clusters through a Wiki
interface to personalize her search result presentation. Ed-
its and annotations can be implicitly shared among users
as a mass-collaborative way of improving search result or-
ganization and search engine utility. This approach is in
the same spirit of the current trends in the Web, like Web
2.0, semantic web, personalization, social tagging and mass
collaboration.
Clustering algorithms fall into two categories: partition-

ing and hierarchical. Regarding clustering results, however,
a hierarchical presentation generalizes a flat partition. Based
on this observation, ClusteringWiki handles both cluster-
ing methods smoothly by providing editing facilities for clus-
ter hierarchies and treating partitions as a special case. In
practice, hierarchical methods are advantageous in cluster-
ing search results because they construct a topic hierarchy
that allows the user to easily navigate search results at dif-
ferent levels of granularity.
Figure 1 shows a snapshot of ClusteringWiki1. The left-

hand label panel presents a hierarchy of cluster labels. The
right-hand result panel presents search results for a chosen
cluster label. A logged-in user can edit the current clusters
by creating, deleting, modifying, moving or copying nodes
in the cluster tree. Each edit will be validated against a set
of predefined consistency constraints before being stored.
Designing and implementing ClusteringWiki pose non-

trivial technical challenges. User edits represent user prefer-
ences or constraints that should be respected and enforced
next time the same query is issued. Query processing is
time-critical, thus efficiency must be given high priority in
maintaining and enforcing user preferences. Moreover, com-
plications also come from the dynamic nature of search re-
sults that constantly change over time.
Cluster editing takes user effort. It is essential that such

user effort can be properly reused. ClusteringWiki con-
siders two kinds of reuse scenarios, preference transfer and

1dmlab.cs.txstate.edu/ClusteringWiki/index.html.

preference sharing. The former transfers user preferences
from one query to similar ones, e.g., from “David J. Dewitt”
to “David Dewitt”. The latter aggregates and shares clus-
tering preferences among users. Proper aggregation allows
users to collaborate at a mass scale and “vote” for the best
search result clustering presentation.

In social tagging, or collaborative tagging, users annotate
Web objects, and such personal annotations can be used to
collectively classify and find information. ClusteringWiki
extends conventional tagging by allowing tagging of struc-
tured objects, which are clusters of search results organized
in a hierarchy.

Contributions.

• We introduce ClusteringWiki, the first framework for
personalized clustering in the context of search result or-
ganization. Unlike existing methods that innovate on the
automatic clustering procedure, it allows direct user edit-
ing of the clustering results through a Wiki interface.

• In ClusteringWiki, user preferences are reused among
similar queries. They are also aggregated and shared
among users as a mass-collaborative way of improving
search result organization and search engine utility.

• We implement a prototype for ClusteringWiki, perform
experimental evaluation and a user study, and maintain
the prototype as a public Web service.

Outline. The rest of the paper is organized as follows.
Section 2 reviews the related work. Section 3 overviews
the ClusteringWiki framework. Section 4 introduces the
framework in detail. Section 5 presents experiments and
user study. Section 6 concludes the paper.

2. RELATED WORK
Clustering. Clustering is the process of organizing objects
into groups or clusters so that objects in the same cluster are
as similar as possible, and objects in different clusters are
as dissimilar as possible. Clustering algorithms fall into two
main categories, partitioning and hierarchical. Partitioning
algorithms, such as k-means [22], produce a flat partition
of objects without any explicit structure that relate clusters
to each other. Hierarchical algorithms, on the other hand,
produce a more informative hierarchy of clusters called a
dendrogram. Hierarchical algorithms are either agglomera-
tive (bottom-up) such as AGNES [18], or divisive (top-down)
such as DIANA [18].

Clustering in IR. As a common data analysis technique,
clustering has a wide array of applications in machine learn-
ing, data mining, pattern recognition, information retrieval,
image analysis and bioinformatics [14, 8]. In information
retrieval and Web search, document clustering was initially
proposed to improve search performance by validating the
cluster hypothesis, which states that documents in the same
cluster behave similarly with respect to relevance to infor-
mation needs [26].

In recent years, clustering has been used to organize search
results, creating a cluster-based search interface as an alter-
native presentation to the ranked list interface. The list
interface works fine for most navigational queries, but is less
effective for informational queries, which account for the ma-
jority of Web queries [4, 27]. In addition, the growing scale of
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the Web and diversity of search results have rendered the list
interface increasingly inadequate. Research has shown that
the cluster interface improves user experience and search re-
sult quality [12, 35, 30, 16].

Search result clustering. One way of creating a cluster
interface is to construct a static, off-line, pre-retrieval clus-
tering of the entire document collection. However, this ap-
proach is ineffective because it is based on features that are
frequent in the entire collection but irrelevant to the partic-
ular query [10, 28, 5]. It has been shown that query-specific,
on-line, post-retrieval clustering, i.e., clustering search re-
sults, produces much superior results [12].
Scatter/Gather [12, 25] was an early cluster-based doc-

ument browsing method that performs post-retrieval clus-
tering on top-ranked documents returned from a traditional
information retrieval system. The Grouper system [34, 35]
(retired in 2000) introduced the well-known Suffix Tree Clus-
tering (STC) algorithm that groups Web search results into
clusters labeled by phrases extracted from snippets. It was
also shown that using snippets is as effective as using whole
documents. Carrot2 (www.carrot2.org) is an open source
search result clustering engine that embeds STC as well as
Lingo [24], a clustering algorithm based on singular value
decomposition.
Other related work from the Web, IR and data mining

communities exists. [36] explored supervised learning for ex-
tracting meaningful phrases from snippets, which are then
used to group search results. [20] proposed a monothetic al-
gorithm, where a single feature is used to assign documents
to clusters and generate cluster labels. [32] investigated us-
ing past query history in order to better organize search
results for future queries. [21] studied search result cluster-
ing for object-level search engines that automatically extract
and integrate information on Web objects. [5] surveyed Web
clustering engines and algorithms.
While all these methods focus on improvement in the au-

tomatic algorithmic procedure of clustering, Clustering-
Wiki employs a Wiki interface that allows direct user editing
of the clustering results.

Clustering with user intervention. In machine learn-
ing, clustering is referred to as unsupervised learning. How-
ever, similar to ClusteringWiki, there are a few clustering
frameworks that involve an active user role, in particular,
semi-supervised clustering [2, 6] and interactive clustering
[31, 15, 3] These frameworks are also motivated by the fact
that clustering is too complex, and it is necessary to open the
“black box” of the clustering procedure for easy understand-
ing, steering and focusing. However, they differ from Clus-
teringWiki in that their focus is still on the clustering pro-
cedure, where they adopt a constraint clustering approach
by transforming user feedback and domain knowledge into
constraints (e.g., must-links and cannot-links) that are in-
corporated into the clustering procedure.

Search result annotation. Prototypes that allow user
editing and annotation of search results exist. For exam-
ple, U Rank by Microsoft (research.microsoft.com/en-us/
projects/urank) and Searchwiki by Google (googleblog.blog
spot.com/2008/11/searchwiki-make-search-your-own.html).
Rants [9] implemented a prototype with additional interest-
ing features including the incorporation of both absolute and
relative user preferences. Similar to ClusteringWiki, these
works pursue personalization as well as a mass-collaborative

query q Query
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cluster

tree T
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preferences

edit e

Figure 2: Main architecture of ClusteringWiki.

way of improving search engine utility. The difference is that
they use the traditional flat list, instead of cluster-based,
search interface.

Tagging and social search. Social tagging, or collabo-
rative tagging, allows users to create and associate objects
with tags as a means of annotating and categorizing content.
While users are primarily interested in tagging for their per-
sonal use, tags in a community collection tend to stabilize
into power law distributions [11]. Collaborative tagging sys-
tems leverage this property to derive folksonomies and im-
prove search [33]. In ClusteringWiki users tag clusters to
organize search results, and the tags can be shared and uti-
lized in the same way as in collaborative tagging. Since clus-
ters are organized in a hierarchy, ClusteringWiki extends
conventional tagging by allowing tagging of structured ob-
jects. Similar to tag suggestion in social tagging, the base
clustering algorithm in ClusteringWiki provides suggested
phrases for tagging clusters.

Social search is a mass-collaborative way of improving
search performance. In contrast to established algorith-
mic or machine-based approaches, social search determines
the relevance of search results by considering the content
created or touched by users in the social graph. Exam-
ple forms of user contributions include shared bookmarks
or tagging of content with descriptive labels. Currently
there are more than 40 such people-powered or community-
powered social search engines, including Eurekster Swiki
(www.eurekster.com), Mahalo (www.mahalo.com), Wikia
(answers.wikia.com/wiki/Wikianswers), and Google social
search (googleblog.blogspot.com/2009/10/introducing-google-
social-search-i.html). Mass collaboration systems on the
Web are categorized and discussed in [7].

3. OVERVIEW
In this section, we overview the main architecture and

design principles of ClusteringWiki. Figure 2 shows the
two key modules. The query processing module takes a query
q and a set of stored user preferences as input to produce
a cluster tree T that respects the preferences. The cluster
editing module takes a cluster tree T and a user edit e as
input to create/update a set of stored user preferences. Each
user editing session usually involves a series of edits. The
processing-editing cycle recurs over time.

Query processing. ClusteringWiki takes a query q from
a user u and retrieves the search results R from a data source
(e.g., Google). Then, it clusters R with a default clustering
algorithm (e.g., frequent phrase hierarchical) to produce an
initial cluster tree Tinit. Then, it applies P , an applicable set
of stored user preferences, to Tinit and presents a modified
cluster tree T that respects P .
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Note that ClusteringWiki performs clustering. The mod-
ification should not alter R, the input data.
If the user u is logged-in, P will be set to Pq,u, a set of

preferences for q previously specified by u. In case Pq,u = ∅,
Pq′,u will be used on condition that q′ is sufficiently close
to q. If the user u is not logged-in, P will be set to Pq,U ,
a set of aggregated preferences for q previously specified by
all users. In case Pq,U = ∅, Pq′,U will be used on condition
that q′ is sufficiently close to q.
In the cluster tree T , the internal nodes, i.e., non-leaf

nodes, contain cluster labels and are presented on the left-
hand label panel. Each label is a set of keywords. The leaf
nodes contain search results, and the leaf nodes for a selected
label are presented on the right-hand result panel. A search
result can appear multiple times in T . The root of T repre-
sents the query q itself and is always labeled with All. When
it is chosen, all search results will be presented on the result
panel. Labels other than All represent the various, possibly
overlapping, sub-topics of q. When there is no ambiguity,
internal node, label node, cluster label and label are used in-
terchangeably in the paper. Similarly, leaf node, result node,
search result and result are used interchangeably.

Cluster editing. If logged-in, a user u can edit the cluster
tree T for query q by creating, deleting, modifying, moving
or copying nodes. User edits will be validated against a set
C of consistency constraints before being written to Pq,u.
The set C contains predefined constraints that are speci-

fied on, for example, the size of clusters, the height of the tree
and the length of labels. These constraints exist to maintain
a favorable user interface for fast and intuitive navigation.
The cluster tree T is consistent if it satisfies all the con-
straints in C.
By combining preferences in Pq,u for all users who have

edited the cluster tree T for query q, we obtain Pq,U , a set of
aggregated preferences for query q. We use Pu to denote the
collection of clustering preferences by user u for all queries,
which is a set of sets of preferences such that ∀q, Pq,u ∈
Pu. We also use PU to denote the collection of aggregated
preferences by all users for all queries, which is a set of sets
of aggregated preferences such that ∀q, Pq,U ∈ PU . Pu and
PU are maintained over time and used by ClusteringWiki
in processing queries for the user u.

Design principles. In a search result clustering engine,
there are significant uncertainties from the data to the clus-
tering algorithm. Wiki-facilitated personalization further
adds substantial complications. Simplicity should be a key
principle in designing such a complex system. Clustering-
Wiki adopts a simple yet powerful path approach.
With this approach, a cluster tree T is decomposed into

a set of root-to-leaf paths that serve as independent editing
components. A path always starts with All (root) and ends
with some search result (leaf). In ClusteringWiki, main-
tenance, aggregation and enforcement of user preferences
are based on simple path arithmetic. Moreover, the path
approach is sufficiently powerful, being able to handle the
finest user preference for a cluster tree.
In particular, each edit of T can be interpreted as oper-

ations on one or more paths. There are two primitive op-
erations on a path p, insertion of p and deletion of p. A
modification of p to p′ is simply a deletion of p followed by
an insertion of p′.
For each user u and each query q, ClusteringWiki main-

tains a set of paths Pq,u representing the user edits from
u for query q. Each path p ∈ Pq,u can be either positive
or negative. A positive path p represents an insertion of p,
meaning that the user prefers to have p in T . A negative
path −p represents a deletion of p, meaning that the user
prefers not to have p in T . Two opposite paths p and −p
will cancel each other out. The paths in Pq,u may be added
from multiple editing sessions at different times.

To aggregate user preferences for query q, Clustering-
Wiki first combines the paths in all Pq,u, u ∈ U , where U is
the set of users who have edited the cluster tree of q. Then,
certain statistically significant paths are selected and stored
in Pq,U .

Suppose in processing query q, P is identified as the ap-
plicable set of paths to enforce. ClusteringWiki first com-
bines the paths in P and the paths in Tinit, where Tinit is
the initial cluster tree. Then, it presents the combined paths
as a tree, which is the cluster tree T . The combination is
straightforward. For each positive p ∈ P , if p /∈ Tinit, add
p to Tinit. For each negative p ∈ P , if p ∈ Tinit, remove p
from Tinit.

Reproducibility. It is easy to verify that Clustering-
Wiki has the property of reproducing edited cluster trees.
In particular, after a series of user edits on Tinit to produce
T , if Tinit remains the same in a subsequent query, exactly
the same T will be produced after enforcing the stored user
preferences generated from the user edits on Tinit.

4. FRAMEWORK
In this section, we introduce the ClusteringWiki frame-

work in detail. In particular, we present the algorithms for
the query processing and cluster editing modules and explain
their main components.

4.1 Query Processing
Algorithm 1 presents the pseudocode for the query pro-

cessing algorithm of ClusteringWiki. In the input, Pu and
PU are used instead of Pq,u and Pq,U for preference transfer
purposes. In processing query q, it is likely that Pq,u = ∅
or Pq,U = ∅; then some applicable Pq′,u ∈ Pu or Pq′,U ∈ PU

can be used. The creation and maintenance of such user
preferences will be discussed in Section 4.2. The output of
the algorithm is a consistent cluster tree T .

Retrieving search results. Line 1 retrieves a set R of
search results for query q from a chosen data source. The
size of R is set to 50 by default and adjustable to up to
500. The available data sources include Google and Yahoo!
Search APIs among others (see Section 5 for details). Clus-
teringWiki retrieves the results via multi-threaded parallel
requests, which are much faster than sequential requests.

The combined titles and snippets of search results re-
trieved from the sources are preprocessed. In order to ex-
tract phrases, we implemented our own tokenizer that iden-
tifies whether a token is a word, numeric, punctuation mark,
capitalized, all caps, etc. We then remove non-textual tokens
and stop words, using the stop word list from the Apache
Snowball package (www.docjar.com/html/api/org/apache/
lucene/analysis/ snowball/SnowballAnalyzer.java.html). The
tokens are then stemmed using the Porter (tartarus.org/ mar-
tin/PorterStemmer/) algorithm and indexed as terms. For
each term, document frequency and collection frequency are
computed and stored. A numeric id is also assigned to each
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Algorithm 1 Query processing

Input: q, u, C, Pu and PU : q is a query. u is a user. C
is a set of consistency constraints. Pu is a collection of
preferences by user u for all queries, where ∀q, Pq,u ∈
Pu. PU is a collection of aggregated preferences for all
queries, where ∀q, Pq,U ∈ PU .

Output: T : a consistent cluster tree for the search results
of query q.

1: retrieve a set R of search results for query q;
2: cluster R to obtain an initial cluster tree Tinit;
3: P ← ∅; //P is the set of paths to be enforced on Tinit

4: if (u is logged-in) then
5: q′ ← Trans(q, u);
6: if (q′ &= NULL) then
7: P ← Pq′,u; //use applicable personal preferences
8: end if
9: else
10: q′ ← Trans(q, U);
11: if (q′ &= NULL) then
12: P ← Pq′,U ; //use applicable aggregated preferences
13: end if
14: end if
15: T ← Tinit; //initialize T , the cluster tree to present
16: clean P ; //remove p ∈ P if its result node is not in R
17: for each p ∈ P
18: if (p is positive) then
19: T ← T ∪ {p}; //add a preferred path
20: else
21: T ← T − {p}; //remove a non-preferred path
22: end if
23: end for
24: trim(T,C); //make T consistent
25: present(T ); //present the set of paths in T as a tree

term in the document collection in order to efficiently cal-
culate document similarity, identify frequent phrases, etc.

Building initial tree. Line 2 builds an initial cluster tree
Tinit with a built-in clustering algorithm. ClusteringWiki
provides 4 such algorithms: k-means flat, k-means hierar-
chical, frequent phrase flat and frequent phrase hierarchical.
The hierarchical algorithms recursively apply their flat coun-
terparts in a top-down manner to large clusters.
The k-means algorithms follow a strategy that generates

clusters before labels. They use a simple approach to gen-
erate cluster labels from titles of search results that are the
closest to cluster centers. In order to produce stable clus-
ters, the typical randomness in k-means due to the random
selection of initial cluster centers is removed. The parameter
k is heuristically determined based on the size of the input.
The frequent phrase algorithms follow a strategy that gen-

erates labels before clusters. They first identify frequent
phrases using a suffix tree built in linear time by Ukkonen’s
algorithm. Then they select labels from the frequent phrases
using a greedy set cover heuristic, where at each step a fre-
quent phrase covering the most uncovered search results is
selected until the whole cluster is covered or no frequent
phrases remain. Then they assign each search result r to a
label L if r contains the keywords in L. Uncovered search
results are added to a special cluster labeled Other. These
algorithms are able to generate very meaningful cluster la-
bels with a couple of heuristics. For example, a sublabel

Algorithm 2 Trans(q, u)

Input: q, u and Pu: q is a query. u is a user. Pu is a
collection of preferences by user u for all queries, where
∀q, Pq,u ∈ Pu.

Output: q′: a query such that Pq′,u is applicable for q.
1: if (Pq,u exists) then
2: return q; //u has edited the cluster tree of q
3: else
4: find q′ s.t. Pq′,u ∈ Pu ∧ termSim(q, q′) is the largest;
5: if termSim(q, q′) ≥ δts then //δts is a threshold
6: if resultSim(q, q′) ≥ δrs then //δrs is a threshold
7: Pq,u ← Pq′,u; //copy preferences from q′ to q
8: return q′;
9: end if
10: end if
11: end if
12: return NULL;

cannot be a subset of a superlabel, in which case the subla-
bel is redundant.
ClusteringWiki smoothly handles flat clustering by treat-

ing partitions as a special case of trees. The built-in clus-
tering algorithms are meant to serve their basic functions.
The focus of the paper is not to produce, but to modify, the
initial cluster trees.

Determining applicable preferences. Lines 3 ∼ 14 de-
termine P , a set of applicable paths to be enforced on Tinit.
Two cases are considered. If the user u is logged-in, P will
use some set from Pu representing personal preferences of
u (lines 4 ∼ 8). Otherwise, P will use some set from PU

representing aggregated preferences (lines 9 ∼ 14). The sub-
routine Trans() determines the actual set to use if any.

The pseudocode of Trans(q, u) is presented in Algorithm 2.
Given a user u and a query q, it returns a query q′, whose
preferences stored in Pq′,u are applicable to query q. In the
subroutine, two similarity measures are used. Term similar-
ity, termSim(q, q′), is the Jaccard coefficient that compares
the terms of q and q′. Result similarity, resultSim(q, q′), is
the Jaccard coefficient that compares the URLs of the top k
(e.g., k = 10) results of q and q′. This calculation requires
that the URLs of the top k results for q′ be stored.

To validate q′, both similarity values need to pass their
respective thresholds δts and δrs. Obviously, the bigger the
thresholds, the more conservative the transfer. Setting the
thresholds to 1 shuts down preference transfer. Instead of
thresholding, another reasonable way of validation is to pro-
vide a ranked list of similar queries and ask the user for
confirmation.

The subroutine in Algorithm 2 first checks if Pq,u exists
(line 1). If it does, preference transfer is not needed and q
is returned (line 2). In this case, u has already edited the
cluster tree for query q and stored the preferences in Pq,u.

Otherwise, the subroutine tries to find q′ such that Pq′,u is
applicable (lines 4 ∼ 11). To do so, it first finds q′ such that
Pq′,u exists and termSim(q, q′) is the largest (line 4). Then,
it continues to validate the applicability of q′ by checking
if termSim(q, q′) and resultSim(q, q′) have passed their re-
spective thresholds (lines 5 sim 6). If so, user preferences for
q′ will be copied to q (line 7), and q′ will be returned (line
8). Otherwise, NULL will be returned (line 11), indicating
no applicable preferences exist for query q.

577



The preference copying (line 7) is important for the cor-
rectness of ClusteringWiki. Otherwise, suppose there is a
preference transfer from q′ to q, where Pq,u = ∅ and Pq′,u

has been applied on Tinit to produce T . Then, after some
editing from u, T becomes T ′ and the corresponding edits
are stored in Pq,u. Then, this Pq,u will be used the next
time the same query q is issued by u. However, Pq,u will
not be able to bring an identical Tinit to the expected T ′.
It is easy to verify that line 7 fixes the problem and ensures
reproducibility.
Trans(q, U) works in the same way. Preference trans-

fer is an important component of ClusteringWiki. Cluster
editing takes user effort and there are an infinite number of
queries. It is essential that such user effort can be properly
reused.

Enforcing applicable preferences. Back to Algorithm 1,
lines 15 ∼ 23 enforce the paths of P on Tinit to produce the
cluster tree T . The enforcement is straightforward. First
P is cleaned by removing those paths whose result nodes
are not in the search result set R (line 16). Recall that
ClusteringWiki performs clustering. It should not alter the
input data R. Then, the positive paths in P are the ones
u prefers to see in T , thus they are added to T (lines 18 ∼
19). The negative paths in P are the ones u prefers not to
see in T , thus they are removed from T (lines 20 ∼ 21). If
P = ∅, there are no applicable preferences and Tinit will not
be modified.

Trimming and Presenting T . The cluster tree T must
satisfy a set C of predefined constraints. Some constraints
maybe violated after applying P to Tinit. For example,
adding or removing paths may result in small clusters that
violate constraints on the size of clusters. In line 24, sub-
routine trim(T,C) is responsible for making T consistent,
e.g., by re-distributing the paths in the small clusters. We
will discuss the constraint set C in detail in Section 4.2.
In line 25, subroutine present(T ) presents the set of paths

in T as a cluster tree on the search interface. The labels can
be expanded or collapsed. The search results for a chosen
label are presented in the result panel in their original or-
der when retrieved from the source. Relevant terms corre-
sponding to current and ancestor labels in search results are
highlighted.
Sibling cluster labels in the label panel are ordered by lex-

icographically comparing the lists of original ranks of their
associated search results. For example, let A and D be two
sibling labels as in Figure 3, where A contains P1, P2, P3

and P4 and D contains P1 and P5. Suppose that i in Pi indi-
cates the original rank of Pi from the source. By comparing
two lists < 1, 2, 3, 4 > and < 1, 5 >, we put A in front of
D. “Other” is a special label that is always listed at the end
behind all its siblings.

Discussion. As [17] suggested, the subset of web pages
visited by employees in an Enterprise is centered around
the company’s business objectives. Additionally, employees
share a common vocabulary describing the objects and tasks
encountered in day to day activities. ClusteringWiki can be
even more effective in this environment as user preferences
can be better aggregated and utilized.

4.2 Cluster Editing
Before explaining the algorithm handling user edits, we

All

A

B

C

D

P1

P2

P3

P4

P1

P5

Figure 3: Example cluster tree.

first introduce the essential consistency constraints for clus-
ter trees and the primitive user edits.

Essential consistency constraints. Predefined consis-
tency constraints exist to maintain a favorable user inter-
face for fast and intuitive navigation. They can be specified
on any structural component of the cluster tree T . In the
following, we list the essential ones.

• Path constraint : Each path of cluster tree T must start
with the root labeled All and end with a leaf node that is a
search result. In case there are no search results returned,
T is empty without paths.

• Presence constraint : Each initial search result must be
present in T . It implies that deletion of paths should not
result in absence of any search result in T .

• Homogeneity constraint : A label node in T must not have
heterogeneous children that combine cluster labels with
search results. This constraint is also used in other clus-
tering engines such as Clusty and Carrot2.

• Height constraint : The height of T must be equal or less
than a threshold, e.g., 4.

• Label length constraint : The length of each label in T must
be equal or less than a threshold.

• Branching constraint : We call a label node a bottom label
node if it directly connects to search results. Each non-
bottom label node must have at least Tn children. Each
non-special bottom label node must have at least Tm chil-
dren. Other is a special bottom label node that may have
less than Tm children. All, when being a bottom label,
could also have less than Tm children in case there are
insufficient search results. By default both Tn and Tm are
set to 2 in ClusteringWiki as in Clusty.

Primitive user edits. ClusteringWiki implements the
following categories of atomic primitive edits that a logged-
in user can initiate in the process of tree editing. Each edit
e is associated with Pe and NPe, the set of paths to be
inserted to the tree and the set of paths to be deleted from
the tree after e.

• e1: copy a label node to another non-bottom label node
as its child. Note that it is allowed to copy a parent label
node to a child label node.

Example: in Figure 3, we can copy D to A. For this edit,
Pe = {All → A → D → P1, All → A → D → P5}.
NPe = ∅ for any edit of this type.
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Algorithm 3 Cluster editing

Input: q, u, T , C, Pq,u, Pq,U and e: q is a query. u is a
user. T is a cluster tree for q. C is a set of consistency
constraints for T . Pq,u is a set of paths representing the
preferences by u for q. Pq,U is a set of paths representing
the aggregated preferences for q. e is an edit by u on T .

Output: updated T , Pq,u and Pq,U

1: if (pre-validation fail) then
2: return;
3: end if
4: identify Pe;
5: identify NPe;
6: if (validation fail) then
7: return;
8: end if
9: update T ;
10: add Pe as positive paths to Pq,u;
11: add NPe as negative paths to Pq,u;
12: update Pq,U ;

• e2: copy a result node to a bottom label node.

Example: in Figure 3, we can copy P3 to D, but not
to A, which is not a bottom label node. For this edit,
Pe = {All → D → P3}. NPe = ∅ for any edit of this
type.

• e3: modify a non-root label node.

Example: in Figure 3, we can modify D to E. For this
edit, Pe = {All → E → P1, All → E → P5} and NPe =
{All → D → P1, All → D → P5}.

• e4: delete a non-root node, which can be either a label
node or a result node.

Example: in Figure 3, we can delete P5. For this edit,
NPe = {All → D → P5}. Pe = ∅ for any edit of this
type.

• e5: create a label node, which can be either a non-bottom
or bottom label node. In particular, recursive creation of
non-bottom labels is a way to add levels to cluster trees.

Example: in Figure 3, we can add E as parent of D. For
this edit, Pe = {All → E → D → P1, All → E → D →
P5} and NPe = {All → D → P1, All → D → P5}.

The editing framework results in several favorable prop-
erties. Firstly, the primitive user edits are such that, with
a series of edits, a user can produce any consistent cluster
tree. Secondly, since e1 only allows a label node to be placed
under a non-bottom node and e2 only allows a result node to
be placed under a bottom node, the homogeneity constraint
will not be violated after any edit given the consistency of
T before the edit. Thirdly, the framework uses eager vali-
dation, where validation is performed right after each edit,
compared to lazy validation, where validation is performed
in the end of the editing process. Eager validation is more
user-friendly and less error-prone in implementation.
Note that, user editing can possibly generate empty labels,

i.e., labels that do not contain any search results and thus
not on any path. Such labels will be trimmed.
To add convenience, ClusteringWiki also implements sev-

eral other types of edits. For example, move (instead of copy
as in e1) a label node to another non-bottom label node as

its child, or move (instead of copy as in e2) a result node to
a bottom label node. Such a move edit can be considered as
a copy edit followed by a delete edit.

Editing algorithm. Algorithm 3 presents the pseudocode
of the cluster editing algorithm in ClusteringWiki for a
single edit e, where e can be any type of edit from e1 to e4.

Lines 1 ∼ 3 perform pre-validation of e to see if it is
in violation of consistency constraints. Violations can be
caught early for certain constraints on certain edits, for ex-
ample, the label length constraint on e1 type of edits. If
pre-validation fails, the algorithm returns immediately.

Otherwise, the algorithm continues with lines 4 ∼ 5 that
identify Pe and NPe. Then, lines 6 ∼ 8 perform full valida-
tion of e against C, the set of consistency constraints. If the
validation fails, the algorithm returns immediately.

Otherwise, e is a valid edit and T is updated (line 9).
Then, the personal user preferences are stored by adding
Pe and NPe to Pq,u as positive paths and negative paths
respectively (lines 10 ∼ 11). In adding these paths, the
opposite paths in Pq,u cancel each other out. In line 12,
the aggregated preferences stored in Pq,U are updated. We
further discuss preference aggregation in the following.

Preference sharing. Preference sharing in Clustering-
Wiki is in line with the many social-powered search engines
as a mass-collaborative way of improving search utility. In
ClusteringWiki, U is considered as a special user and Pq,U

stores the aggregated user preferences.
In particular, we use P 0

q,U to record the paths specified
for query q by all users. Each path p ∈ P 0

q,U has a count
attribute, recording the total number of times that p appears
in any Pq,u. All paths in P 0

q,U are grouped by leaf nodes. In
other words, all paths that end with the same search result
are in the same group. For each group, we keep track of
two best paths: a positive one with the most count and a
negative one with the most count. We mark a best path
if its count passes a predefined threshold. All the marked
paths constitute Pq,U , the set of aggregated paths that are
used in query processing. Note that, here ClusteringWiki
adopts a conservative approach, making use of at most one
positive path and one negative path for each search result.

Editing interface. Cluster editing in ClusteringWiki is
primarily available through context menus attached to label
and result nodes. Context menus are context aware, dis-
playing only those operations that are valid for the selected
node. For example, the paste result operation will not be
displayed unless the selected node is a bottom label node
and a result node was previously copied or cut. This effec-
tively implements pre-validation of cluster edit operations
by not allowing the user to choose invalid tasks.

Users can drag and drop a result node or cluster label
in addition to cutting/copying and pasting to perform a
move/copy operation. A label node will be tagged with an
icon if the item being dragged can be pasted within that
node. An item that is dropped outside a label node in which
it could be pasted simply returns to its original location.

5. EVALUATION
ClusteringWiki was implemented as an AJAX-enabled

Java Enterprise Edition 1.5 application. The prototype is
maintained on an average PC with Intel Pentium 4 3.4 GHz
CPU and 4Gb RAM running Apache Tomcat 6.
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5.1 Methodology and Metrics
We performed two series of experiments: system evalua-

tion and utility evaluation. The former focused on the cor-
rectness and efficiency of our implemented prototype. The
latter, our main experiments, focused on the effectiveness of
ClusteringWiki in improving search performance.

Data sources. Multiple data sources were used in our
empirical evaluation, including Google AJAX Search API
(code.google.com/apis/ajaxsearch), Yahoo! Search API (de-
veloper.yahoo.com/search/web/webSearch.html), and local
Lucene indexes built on top of the New York Times Anno-
tated Corpus [29] and several datasets from the TIPSTER
(disks 1-3) and TREC (disks 4-5) collections (www.nist.gov/
tac/data/data desc.html). The Google API can retrieve a
maximum of 8 results per request and a total of 64 results
per query. The Yahoo! API can retrieve a maximum of 100
results per request and a total of 1000 results per query. Due
to user licence agreements, the New York Times, TIPSTER
and TREC datasets are not available publicly.

System evaluation methodology. For system evalua-
tion of ClusteringWiki, we focused on correctness and effi-
ciency. We tested the correctness by manually executing a
number of functional and system tests designed to test ev-
ery aspect of application functionality. These tests included
cluster reproducibility, edit operation pre-validations, clus-
ter editing operations, convenience features, applying pref-
erences, preference transfer, preference aggregation, etc.
In order to have repeatable search results for same queries,

we used the stable New York Times data source. We chose
queries that returned at least 200 results.
We evaluated system efficiency by monitoring query pro-

cessing time in various settings. In particular, we considered:

• 2 data sources: Yahoo! and New York Times

• 5 different numbers of retrieved search results: 100, 200,
300, 400, 500

• 2 types of clusterings: flat (F) and hierarchical (H)

For each of the combinations, we executed 5 queries, each
twice. The queries were chosen such that at least 500 search
results would be returned. For each query, we monitored
6 portions of execution that constitute the total query re-
sponse time:

• Retrieving search results

• Preprocessing retrieved search results

• Initial clustering by a built-in algorithm

• Applying preferences to the initial cluster tree

• Presenting the final cluster tree

• Other (e.g., data transfer time between server and browser)

For the New York Times data source, the index was loaded
into memory to simulate the server side search engine be-
havior. The time spent on applying preferences depends on
the number of applicable stored paths. For each query, we
made sure that at least half the number of retrieved results
existed in a modified path, which is a practical upper-bound
on the number of user edits on the clusters of a query.

Utility evaluation methodology. For utility evaluation,
we focused on the effectiveness of ClusteringWiki in im-
proving search performance, in particular, the time users
spent to locate a certain number of relevant results. The
experiments were conducted through a user study with 22

paid participants. The participants were primarily under-
graduate, with a few graduate, colleage students.

We compared 4 different search result presentations:

• Ranked list (RL): search results were not clustered and
presented as a traditional ranked list.

• Initial clustering (IC): search results were clustered by a
default built-in algorithm (frequent phrase hierarchical).

• Personalized clustering (PC): search result clustering was
personalized by a logged-in user after a series of edits,
taking on average 1 and no more than 2 minutes per query.

• Aggregated clustering (AC): search result clustering was
based on aggregated edits from on average 10 users.

Navigational queries seek the website or home page of a
single entity that the user has in mind. The more common
[4, 27] informational queries seek general information on a
broad topic. The ranked list interface works fine for the for-
mer in general but is less effective for the latter, which is
where clustering can be helpful [23]. In practice, a user may
explore a varied number (e.g., 5 or 10) of relevant results for
an informational query. Thus, we considered 2 types of infor-
mational queries. In addition, we argue that for some deep
navigational queries where the desired page “hides” deep in
a ranked list, clustering can still be helpful by skipping ir-
relevant results. Thus, we also considered such queries:

• R10: Informational. To locate any 10 relevant results.

• R5: Informational. To locate any 5 relevant results.

• R1: Navigational. To locate 1 pre-specified result.

For each query type, 10 queries were executed, 5 on Google
results and 5 on the AP Newswire dataset from disk 1 of the
TIPSTER corpus. The AP Newswire queries were chosen
from TREC topics 50-150, ensuring that they returned at
least 15 relevant results within the first 50 results. For R1

queries, the topic descriptions were modified to direct the
user to a single result that is relatively low-ranked to make
the queries “deep”. Google queries were chosen from topics
that participants were familiar with. All queries returned
at least 50 results. These queries and their descriptions and
narratives can be found at [1].

Each user was given 15 queries, 5 for each query type.
Each query was executed 4 times for the 4 presentations
being compared. Thus, in total each user executed 15× 4 =
60 queries. For each execution, the user exploration effort
was computed.

User effort was the metric we used to measure the search
result exploration effort exerted by a user in fulfilling her
information need. [19] used a similar metric under a proba-
bilistic model instead of user study. Assuming both search
results and cluster labels are scanned and examined in a
top-down manner, user effort Ω can be computed as follows:

• Add 1 point to Ω for each examined search result.

• Add 0.25 point to Ω for each examined cluster label. This
is because labels are much shorter than snippets.

• Add 0.25 point to Ω for each uncertain result. Based on
our assumption, all results before a tagged relevant result
are examined. However, results after the last tagged result
remain uncertain. For linked list presentation, there is
no uncertainty because the exploration ends at a tagged
result due to the way the queries are chosen (more relevant
results than needed).
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Figure 4: Efficiency evaluation.

Uncertainty could occur for results within a chosen clus-
ter C. As an effective way of utilizing cluster labels, most
users would partially examine a few results in C to eval-
uate the relevance of C itself. If they think C is relevant,
they must have found and tagged some relevant results
in C. If they think C is irrelevant, they would ignore the
cluster and quickly move to the next label. Thus, each un-
certain result has a probability of being examined. Based
on our observation for this particular user study, we em-
pirically used 0.25 for this probability.

5.2 System Evaluation Results
For correctness, all functional and system tests were exe-

cuted successfully. A detailed description of these tests can
be found at [1]. In the following, we focus on the efficiency
evaluation results.
We recorded and averaged (over 10 queries) the runtime in

seconds for all 6 portions of total response time. In addition,
we also computed the average total execution time, which in-
cludes preprocessing, initial clustering, applying preferences
and presenting the final tree. This is the time that our pro-
totype is responsible for. The remaining time is irrelevant to
the way our prototype is designed and implemented. While
the details are reported in [1], Figure 4 shows the trends of
the average total execution time (Exec in the figure) and
response time (Resp) for both flat (F) and hierarchical (H)
presentations over 2 sources of Yahoo! (Yahoo!) and New
York Times (NYT). From the figure we can see that:

• Response and execution time trends are linear, testifying
to the scalability of our prototype. In particular, for both
flat and hierarchical clustering, the total execution time is
about 1 second for 500 results and 0.4 second for 200 re-
sults from either source. Note that most existing cluster-
ing search engines, e.g., iBoogie (www.iboogie.com) and
CarrotSearch (carrotsearch.com), cluster 100 results by
default and 200 at maximum. Clusty (www.clusty.com)
clusters 200 results by default and 500 at maximum.

• Hierarchical presentation (H) takes comparable times to
flat presentation (F), showing that recursive generation of
hierarchies does not add significant cost to efficiency.

• There is a bigger discrepancy between response and execu-
tion times for the Yahoo! data source compared to New
York Times, suggesting a significant efficiency improve-
ment by integrating our prototype with the data sources.
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Figure 5: Utility evaluation on Google data source.

• Execution times for Yahoo! are shorter than New York
Times due to the shorter titles and snippets.

In addition, we observe (and report in [1] with supporting
data) that applying preferences takes less than 1/10 second
in all test cases, which certifies the efficiency of our “path
approach” for managing preferences. Moreover, presenting
the final tree takes the majority (roughly 80%) of the total
execution time, which can be improved by using alternate
user interface technologies.

5.3 Utility Evaluation Results
Figure 5 shows the averaged user effort (over 22×5 = 110

queries) for each of the 4 presentations (RL, IL, PC, AC)
and each of the query types (R1, R5, R10) on the Google
data source. Similar trends can be observed from the AP
Newswire data source (see [1] for details). From the figure
we can see that:

• Clustering saves user effort in informational and deep nav-
igational queries, with personalized clustering the most
effective, saving up to 50% of user effort.

• Aggregated clustering also significantly benefits, although
it is not as effective as personalized clustering. However,
it is “free” in the sense that it does not take user editing
effort, and it does not require user login.

In evaluating aggregated clustering, we made sure that
the users using the aggregated clusters were not the ones
who edited them.

• The effectiveness of clustering is related to how“deep” the
relevant results are. The lower they are ranked, the more
effective clustering is because more irrelevant results can
be skipped.

The hierarchy of cluster labels plays a central role in the
effectiveness of clustering search engines. From the data we
have collected as well as the user feedback, we observe that:

• Cluster labels should be short and in the range of 1 to
4 terms, with 2 and 3 the best. The total levels of the
hierarchy should be limited to 3 or 4.

• There are two types of cluster edits, (1) assigning search
results to labels and (2) editing the hierarchy of labels.
Both types are effective for personalized clustering. How-
ever, they respond differently for aggregated clustering.
For type 1 edits, there is a ground truth (in a loose sense)
for each assignment that users tend to agree on. Such ed-
its are easy to aggregate and be collaboratively utilized.
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For type 2 edits, it can be challenging (and a legitimate re-
search topic) to aggregate hierarchies because many edited
hierarchies can be good but in diverse ways. A good initial
clustering (e.g., frequent phrase hierarchical) can alleviate
the problem by reducing the diversity.

As part of the user study, we also surveyed on the effec-
tiveness of general, personalized and aggregated clustering
in helping with search result exploration. On a scale of 1
to 10 with 10 as the best, users responded with an average
rating of 8.21. Most users found ClusteringWiki efficient
and useful in reducing their search effort.

6. CONCLUSION
Search engine utility has been significantly hampered due

to the ever-increasing information overload. Clustering has
been considered a promising alternative to ranked lists in
improving search result organization. Given the unique hu-
man factor in search result clustering, traditional automatic
algorithms often fail to generate clusters and labels that are
interesting and meaningful from the user’s perspective. In
this paper, we introduced ClusteringWiki, the first pro-
totype and framework for personalized clustering, utilizing
the power of direct user intervention and mass-collaboration.
Through a Wiki interface, the user can edit the member-
ship, structure and labels of clusters. Such edits can be ag-
gregated and shared among users to improve search result
organization and search engine utility.
There are many interesting directions for future work,

from fundamental semantics and functionalities of the frame-
work to convenience features, user interface and scalability.
For example, in line with social browsing, social network can
be utilized in preference aggregation.
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