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ABSTRACT
High utility itemsets refer to the sets of items with high
utility like profit in a database, and efficient mining of
high utility itemsets plays a crucial role in many real-
life applications and is an important research issue in
data mining area. To identify high utility itemsets, most
existing algorithms first generate candidate itemsets by
overestimating their utilities, and subsequently compute the
exact utilities of these candidates. These algorithms incur
the problem that a very large number of candidates are
generated, but most of the candidates are found out to
be not high utility after their exact utilities are computed.
In this paper, we propose an algorithm, called HUI-Miner
(High Utility Itemset Miner), for high utility itemset mining.
HUI-Miner uses a novel structure, called utility-list, to
store both the utility information about an itemset and
the heuristic information for pruning the search space of
HUI-Miner. By avoiding the costly generation and utility
computation of numerous candidate itemsets, HUI-Miner
can efficiently mine high utility itemsets from the utility-
lists constructed from a mined database. We compared
HUI-Miner with the state-of-the-art algorithms on various
databases, and experimental results show that HUI-Miner
outperforms these algorithms in terms of both running time
and memory consumption.
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1. INTRODUCTION
The rapid development of database techniques facilitates

the storage and usage of massive data from business
corporations, governments, and scientific organizations.
How to obtain valuable information from various databases
has received considerable attention, which results in the
sharp rise of related research topics. Among the topics,
the high utility itemset mining problem is one of the most
important, and it derives from the famous frequent itemset
mining problem [7, 8].

Mining frequent itemsets is to identify the sets of items
that appear frequently in transactions in a database. The
frequency of an itemset is measured with the support of
the itemset, i.e., the number of transactions containing the
itemset. If the support of an itemset exceeds a user-specified
minimum support threshold, the itemset is considered as
frequent. Most frequent itemset mining algorithms employ
the downward closure property of itemsets [4]. That is, all
supersets of an infrequent itemset are infrequent, and all
subsets of a frequent itemset are frequent. The property
provides the algorithms with a powerful pruning strategy. In
the process of mining frequent itemsets, once an infrequent
itemset is identified, the algorithms no longer check all
supersets of the itemset. For example, for a database with
n items, after the algorithms identify an infrequent itemset
containing k items, there is no need to check all of its
supersets, i.e., 2(n−k) − 1 itemsets.

Mining of frequent itemsets only takes the presence and
absence of items into account. Other information about
items is not considered, such as the independent utility of
an item and the context utility of an item in a transaction.
Typically, in a supermarket database, each item has a
distinct price/profit, and each item in a transaction is
associated with a distinct count which means the quantity of
the item one bought. Consider the database in Fig. 1. There
are seven items in the utility table and seven transactions in
the transaction table in the database. To calculate support,
an algorithm only makes use of the information of the
first two columns in the transaction table, the information
of both the utility table and the other columns in the
transaction table are discarded. However, an itemset with
high support may have low utility, or vice versa. For
example, the support and utility of itemset {bc} appearing
in T1, T2, and T6 are 3 and 18 respectively(See Section
2.1 for utility computation), and those of itemset {de}
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Figure 1: Database

appearing in T2 and T5 are 2 and 22. In some applications,
such as market analysis, one may be more interested in
the utility rather than support of itemsets. Traditional
frequent itemset mining algorithms cannot evaluate the
utility information about itemsets.
Like frequent itemsets, itemsets with utilities not less than

a user-specified minimum utility threshold are generally
valuable and interesting, and they are called “high utility
itemsets”. To mine all high utility itemsets from a database
is very intractable, because the downward closure property
of itemsets no longer holds for high utility itemsets. When
items are appended to an itemset one by one, the support of
the itemset monotonously decreases or remains unchanged,
but the utility of the itemset varies irregularly. For example,
for the database in Fig. 1, the supports of {a}, {ab}, {abc},
and {abcd} are 4, 3, 2, and 1, but the utilities of these
itemsets are 16, 26, 21, and 14, respectively. Suppose the
threshold is 20, and then high utility {abc} contains both
high utility {ab} and low utility {a}. Therefore, the pruning
strategy used in the frequent itemset mining algorithms
becomes invalid.
Recently, a number of high utility itemset mining

algorithms have been proposed [25, 18, 14, 5, 23, 22].
Most of the algorithms adopt a similar framework: firstly,
generate candidate high utility itemsets from a database;
secondly, compute the exact utilities of the candidates by
scanning the database to identify high utility itemsets.
However, the algorithms often generate a very large number
of candidate itemsets and thus are confronted with two
problems: (1) excessive memory requirement for storing
candidate itemsets; (2) a large amount of running time for
generating candidates and computing their exact utilities.
When the number of candidates is so large that they cannot
be stored in memory, the algorithms will fail or their
performance will be degraded due to thrashing.
To solve these problems, we propose in this paper an

algorithm for high utility itemset mining. The contributions
of the paper are as follows:

1. A novel structure, called utility-list, is proposed. A
utility-list stores not only the utility information about
an itemset but also the heuristic information about
whether the itemset should be pruned or not.

2. An efficient algorithm, called HUI-Miner (High Utility
Itemset Miner), is developed. Different from previous

algorithms, HUI-Miner does not generate candidate
high utility itemsets. After constructing the initial
utility-lists from a mined database, HUI-Miner can
mine high utility itemsets from these utility-lists.

3. Extensive experiments on various databases were
performed to compare HUI-Miner with the state-of-
the-art algorithms. Experimental results that show
HUI-Miner outperforms these algorithms are reported.

After the related background is stated in Section 2,
the paper is organized according to the three points
aforementioned in Section 3, 4, and 5. Our work is
summarized in Section 6.

2. BACKGROUND
In the section, we first give the formal description of

the high utility itemset mining problem and subsequently
introduce the previous solutions to the problem.

2.1 Problem Definition
Let I={i1, i2, i3, . . . , in} be a set of items and DB be a

database composed of a utility table and a transaction table.
Each item in I has a utility value in the utility table. Each
transaction T in the transaction table has a unique identifier
(tid) and is a subset of I, in which each item is associated
with a count value. An itemset is a subset of I and is called
a k-itemset if it contains k items.

Definition 1. The external utility of item i, denoted as
eu(i), is the utility value of i in the utility table of DB.

Definition 2. The internal utility of item i in
transaction T, denoted as iu(i, T), is the count value
associated with i in T in the transaction table of DB.

Definition 3. The utility of item i in transaction T,
denoted as u(i, T), is the product of iu(i, T) and eu(i), where
u(i, T) = iu(i, T) × eu(i).

For example, in Fig. 1, eu(e) = 4, iu(e, T5) = 2, and u(e,
T5)= iu(e, T5) × eu(e) = 2 × 4 = 8.

Definition 4. The utility of itemset X in transaction T,
denoted as u(X, T), is the sum of the utilities of all the
items in X in T in which X is contained, where u(X, T) =∑

i∈X∧X⊆T u(i, T ).

Definition 5. The utility of itemset X, denoted as u(X),
is the sum of the utilities of X in all the transactions
containing X in DB, where u(X) =

∑
T∈DB∧X⊆T u(X,T ).

For example, in Fig. 1, u({ae}, T2) = u(a, T2) + u(e, T2)
= 4 × 1 + 1 × 4 = 8, and u({ae}) = u({ae}, T2) + u({ae},
T5) = 8 + 13 = 21.

Definition 6. The utility of transaction T, denoted as
tu(T), is the sum of the utilities of all the items in T , where
tu(T) =

∑
i∈T u(i, T ), and the total utility of DB is the sum

of the utilities of all the transactions in DB.

Fig. 2 shows the utility of each transaction, for example,
tu(T1) = u(b, T1) + u(c, T1) + u(d, T1) + u(g, T1) = 2 +
2 + 5 + 1 = 10. The total utility of the database in Fig. 1
is 98. An itemset X is high utility if u(X) is not less than a
user-specified minimum utility threshold denoted as minutil,
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Figure 2: Transaction Utility

or the product of a minutil and the total utility of a mined
database if the minutil is a percentage. Given a database
and a minutil, the high utility itemset mining problem is to
discover from the database all the itemsets whose utilities
are not less than the minutil.

2.2 Related Work
Before the high utility itemset mining problem was

formally proposed [25] as above, a variation of the problem
had been studied, namely the problem of extracting share
frequent itemsets [6, 13, 12] that invariably defines the
external utility of each item as 1. The ZP [6], ZSP [6],
FSH [13], ShFSH [12], and DCG [11] algorithms for share
frequent itemset mining can also be used to mine high utility
itemsets. Since the downward closure property cannot be
directly applied, Liu et al. proposed an important property
[17] for pruning the search space of the high utility itemset
mining problem.

Definition 7. The transaction-weighted utility of
itemset X in DB, denoted as twu(X), is the sum of the
utilities of all the transactions containing X in DB, where
twu(X) =

∑
T∈DB∧X⊆T tu(T ).

Property 1. If twu(X) is less than a given “minutil”, all
supersets of X are not high utility.
Rationale. If X ⊆ X ′, then u(X ′) ≤ twu(X ′) ≤ twu(X) <
minutil.
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Figure 3: Transaction-Weighted Utility

Fig. 3 shows the transaction-weighted utilities of all 1-
itemsets. For example, itemset {f} is contained in T4 and
T6, and thus twu({f}) = tu(T4) + tu(T6) = 9 + 18 = 27.
If a minutil is equal to 30, all supersets of {f} are not high
utility according to Property 1. The Two-Phase algorithm
[18, 17] first adopts Property 1 to prune the search space.
Afterwards, the isolated items discarding strategy (IIDS) is
proposed [14], and the strategy can be incorporated in the
above algorithms to improve their performance, for example,
the FUM [14] and DCG+ [14] algorithms outperform ShFSH
and DCG, respectively.
ZP, ZSP, FSH, ShFSH, DCG, Two-Phase, FUM, and

DCG+ mine high utility itemsets as the famous Apriori
algorithm [4] mines frequent itemsets. Given a database,
firstly, all 1-itemsets are candidate high utility itemsets.
After scanning the database, the algorithms eliminate
unpromising 1-itemsets and generate 2-itemsets from the
remaining 1-itemsets as candidate high itemsets. After
the second scan over the database, unpromising 2-itemsets
are eliminated and 3-itemsets as candidates are generated
from the remaining 2-itemsets.. The procedure is performed
repeatedly until there is no generated candidate itemset.

Finally, these algorithms, except for DCG and DCG+,
compute the exact utilities of all remaining candidates by
an additional database scan to identify high utility itemsets
(DCG and DCG+ compute exact utility in each database
scan.). Besides the two problems mentioned in Section 1,
these algorithms suffer from the level-wise mining problems
as well, e.g., repeated database scans.

The algorithms based on the FP-Growth algorithm
[9] show better performance. These algorithms include
IHUPTWU [5], UP-Growth [23], and UP-Growth+ [22].
Firstly, they transform a mined database into a prefix-
tree, and the tree maintains the utility information about
itemsets. Secondly, for each item of the tree, if it is estimated
to be valuable, namely there is likely to be high utility
itemsets containing the item, the algorithms construct a
conditional prefix-tree for the item. Thirdly, the algorithms
recursively process all conditional prefix-trees to generate
candidate high utility itemsets. Finally, the algorithms scan
the database again to compute the exact utilities of all
candidates for identifying high utility itemsets. Reducing
the numbers of both database scans and candidate itemsets,
these algorithms outperform the Apriori-based algorithms.
Even so, compared with the number of resultant high utility
itemsets, these algorithms still generate a large number of
candidate itemsets in most cases, and it is very costly to both
generate these candidates and compute their exact utilities.

There are also a number of studies that focus on the
problem of mining an approximate set of all high utility
itemsets [10, 24] or a condensed set of all high utility itemsets
[20, 21]. In this study, the problem of mining the complete
set of all high utility itemsets from a database is discussed.

3. UTILITY-LIST STRUCTURE
To mine high utility itemsets, many previous algorithms

directly perform on an original database. Although FP-
Growth-based algorithms generate candidate itemsets from
prefix-trees, they have to compute the exact utilities of
candidates by scanning the database. In the section,
we propose a utility-list structure to maintain the utility
information about a database.

3.1 Initial Utility-Lists
In our HUI-Miner algorithm, each itemset holds a utility-

list. Initial utility-lists storing the utility information about
a mined database can be constructed by two scans of
the database. Firstly, the transaction-weighted utilities
of all items are accumulated by a database scan. If the
transaction-weighted utility of an item is less than a given
minutil, the item is no longer considered according to
Property 1 in the subsequent mining process. For the items
whose transaction-weighted utilities exceed the minutil, they
are sorted in transaction-weighted-utility-ascending order.
For the database in Fig. 1, suppose the minutil is 30,
and then the algorithm no longer takes items f and g into
consideration after the first database scan. The remaining
items are sorted: e<c<b<a<d.

Definition 8. A transaction is considered as “revised”
after (1) all the items whose transaction-weighted utilities
are less than a given minutil are deleted from the transaction;
(2) the remaining items are sorted in transaction-weighted-
utility-ascending order.

When scanning the database again, the algorithm revises
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Figure 4: Database View

each transaction for constructing initial utility-lists. The
database view in Fig. 4 lists all revised transactions derived
from the database in Fig. 1. From here on, the following
convention holds in the remainder of this paper:

Convention 1. A transaction is considered as revised,
and all the items in an itemset are sorted in transaction-
weighted-utility-ascending order, when mentioned.

Definition 9. Given an itemset X and a transaction (or
itemset) T with X⊆T, the set of all the items after X in T
is denoted as T/X.

For example, consider the view in Fig. 4, T2/{eb} = {ad}
and T2/{c} = {bad}.

Definition 10. The remaining utility of itemset X in
transaction T, denoted as ru(X, T), is the sum of the
utilities of all the items in T/X in T, where ru(X, T) =∑

i∈(T/X) u(i, T ).

Each element in the utility-list of itemset X contains three
fields: tid, iutil, and rutil.

• Field tid indicates a transaction T containing X.

• Field iutil is the utility of X in T , i.e., u(X, T ).

• Field rutil is the remaining utility of X in T , i.e., ru(X,
T ).
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Figure 5: Initial Utility-Lists

During the second database scan, the algorithm constructs
the initial utility-lists showed in Fig. 5. For example,
consider the utility-list of itemset {c}. In T1, u({c}, T1)
= 2, ru({c}, T1) = u(b, T1) + u(d, T1) = 2 + 5 = 7,
and thus element <1, 2, 7> is in the utility-list of {c} (<x,
y, z> means <tid, iutil, rutil>, and 1 represents T1 for
simplicity.). In T2, u({c}, T2) = 3, ru({c}, T2) = u(b, T2)
+ u(a, T2) + u(d, T2) = 2 + 4 + 5 = 11, and thus element
<2, 3, 11> belongs to the utility-list of {c} as well. The rest
can be figured out in the same manner.

3.2 Utility-Lists of 2-Itemsets
No need for database scan, the utility-list of 2-itemset

{xy} can be constructed by the intersection of the utility-
list of {x} and that of {y}. The algorithm identifies
common transactions by comparing the tids in the two
utility-lists. Suppose the lengths of the utility-lists are m
and n respectively, and then (m + n) comparisons at most
are enough for identifying common transactions, because
all tids in a utility-list are ordered. The identification
process is actually a 2-way comparison. For example, the
tid comparison between the utility-lists of itemsets {e} and
{c} in Fig. 5 is demonstrated in Fig. 6(a).
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Figure 6: Constructing Utility-Lists of 2-Itemsets

For each common transaction t, the algorithm will
generate an element E and append it to the utility-list of
{xy}. The tid field of E is the tid of t. The iutil of E is the
sum of the iutils associated with t in the utility-lists of {x}
and {y}. Suppose x is before y, and then the rutil of E is
assigned as the rutil associated with t in the utility-list of
{y}.

Fig. 6(b) depicts the utility-lists of all the 2-itemsets with
itemset {e} as prefix. For example, to construct the utility-
list of itemset {eb}, the algorithm intersects the utility-list
of {e}, i.e., {<2, 4, 14>, <4, 4, 2>, <5, 8, 14>}, and that
of {b}, i.e., {<1, 2, 5>, <2, 2, 9>, <5, 4, 10>, <6, 8, 3>},
which results in {<2, 6, 9>, <5, 12, 10>}. One can observe
from the database view in Fig. 4 that itemset {eb} only
appears in T2 and T5. In T2, u({eb}, T2) = u(e, T2) +
u(b, T2) = 2 + 4 = 6, and ru({eb}, T2) = u(a, T2) + u(d,
T2) = 4 + 5 = 9. Similarly, in T5, the utility of {eb} is 8
+ 4 = 12, and the remaining utility of {eb} is 5 + 5 = 10.

3.3 Utility-Lists of k-Itemsets (k≥3)
To construct the utility-list of k-itemset {i1 · · · i(k−1)ik}

(k≥3), we can directly intersect the utility-list of
{i1 · · · i(k−2)i(k−1)} and that of {i1 · · · i(k−2)ik} as we do
to construct the utility-list of a 2-itemset. For example,
to construct the utility-list of {eba}, we can intersect the
utility-list of {eb} and that of {ea} in Fig. 6(b), and the
resultant utility-list is depicted in Fig. 7(a). Itemset {eba}
does appear in T2 and T5 in the database view in Fig. 4,
and however the utilities of the itemset in T2 and T5 are 10
and 17 rather than 14 and 25, respectively.

The reason for miscalculating the utility of {eba} in
T2 is that the sum of the utilities of both {eb} and
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Figure 7: Utility-Lists of 3-Itemsets
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Algorithm 1: Construct Algorithm

Input: P.UL, the utility-list of itemset P ;
Px.UL, the utility-list of itemset Px ;
Py.UL, the utility-list of itemset Py.

Output: Pxy.UL, the utility-list of itemset Pxy.
1 Pxy.UL = NULL;
2 foreach element Ex ∈ Px.UL do
3 if ∃Ey∈Py.UL and Ex.tid==Ey.tid then
4 if P.UL is not empty then
5 search such element E∈P.UL that

E.tid==Ex.tid ;
6 Exy=<Ex.tid, Ex.iutil+Ey.iutil-E.iutil,

Ey.rutil>;

7 else
8 Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>;
9 end

10 append Exy to Pxy.UL;

11 end

12 end
13 return Pxy.UL;

{ea} in T2 contains the utility of {e} in T2 twofold.
Generally, to calculate the utility of {i1 · · · i(k−2)i(k−1)ik}
in T, the following formula holds: u({i1 · · · i(k−2)i(k−1)ik},
T) = u({i1 · · · i(k−2)i(k−1)}, T) + u({i1 · · · i(k−2)ik}, T) -
u({i1 · · · i(k−2)}, T).
Therefore, the iutil of the element associated with T2 in

the utility-list of {eba} is: u({eba}, T2) = u({eb}, T2) +
u({ea}, T2) - u({e}, T2) = 6 + 8 - 4 = 10. That associated
with T5 is: u({eba}, T5) = u({eb}, T5) + u({ea}, T5) -
u({e}, T5) = 12 + 13 - 8 = 17. The values of u({eb}, T),
u({ea}, T), and u({e}, T) can be accessed from the utility-
lists of {eb}, {ea}, and {e}, respectively.
Suppose itemsets Px and Py are the combinations of

itemset P with items x and y (x is before y.), respectively,
and P.UL, Px.UL, and Py.UL are the utility-lists of itemsets
P, Px, and Py. Algorithm 1 shows how to construct the
utility-list of itemset Pxy. The utility-list of a 2-itemset is
constructed when P.UL is empty, namely when P is empty,
and the utility-list of a k-itemset (k≥3) is constructed when
P.UL is not empty. Note that element E in line 5 can
always be found out when P.UL is not empty, because the
tid sets in both Px.UL and Py.UL are subsets of the tid set
in P.UL. The utility-lists of all the itemsets with {eb} as
prefix constructed by Algorithm 1 are showed in Fig. 7(b).
Thus far, we have illustrated how to construct the utility-

list of an itemset. When does HUI-Miner construct the
utility-list of an itemset and how does HUI-Miner judge
whether or not the utility-list of an itemset should be
constructed, which will be illuminated in the next section.

4. HIGH UTILITY ITEMSET MINER
After constructing the initial utility-lists from a database,

the HUI-Miner algorithm can efficiently mine all high utility
itemsets from the utility-lists as the Eclat algorithm mines
frequent itemsets [26]. In the section, the search space of
HUI-Miner is first introduced, and subsequently we propose
a pruning strategy for the algorithm. Finally, the HUI-
Miner algorithm and a number of implementation details
are presented.

4.1 Search Space
The search space of the high utility itemset mining

problem can be represented as a set-enumeration tree [19].
Given a set of items I = {i1, i2, i3, . . . , in} and a total order
on all items (suppose i1 < i2 < · · · < in), a set-enumeration
tree representing all itemsets can be constructed as follows.
Firstly, the root of the tree is created; secondly, the
n child nodes of the root representing n 1-itemsets are
created, respectively; thirdly, for a node representing itemset
{is · · · ie} (1 ≤ s ≤ e < n), the (n−e) child nodes of the node
representing itemsets {is · · · iei(e+1)}, {is · · · iei(e+2)}, ...,
{is · · · iein} are created. The third step is done repeatedly
until all leaf nodes are created. For example, given I = {e,
c, b, a, d} and e < c < b < a < d, a set-enumeration tree
representing all itemsets of I is depicted in Fig. 8.

4 2 1 0 3

42 41 40 43 21 20 23 10 13 03

421 420 423 410 413 403 210 213 203 103

4210 4213 4203 4103 2103

/

42103 .845 67347, 4 - 2 - 1 - 0 - 3

Figure 8: Set-Enumeration Tree

Definition 11. Given a set-enumeration tree, an itemset
represented by a node is called an extension of an itemset
represented by an ancestor node of the node. For an itemset
containing k items, its extension containing (k+i) items is
called an i-extension of the itemset.

Property 2. If X’ is an extension of X,
(X’−X)=(X’/X).
Rationale. Any extension of X is a combination of X with
the item(s) after X.

For example, in Fig. 8, itemsets {eba} and {ebd} are
the 1-extensions of {eb}, and {ebad} is the 2-extension of
{eb}. Starting from the root of a set-enumeration tree, for
an itemset, HUI-Miner first checks all of its 1-extensions
by constructing their utility-lists. After identifying and
outputting high utility itemsets from the extensions, HUI-
Miner recursively processes promising extensions one by
one and gives up the others. The question is: what are
“promising” extensions?

4.2 Pruning Strategy
Exhaustive search can discover all high utility itemsets

but is excessively time-consuming, because the numbers of
items are large for many databases. For a database with n
items, exhaustive search has to check 2n itemsets.

To reduce the search space, we can exploit the iutils and
rutils in the utility-list of an itemset. The sum of all the
iutils in the utility-list of an itemset is the utility of the
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itemset according to Definition 5, and thus the itemset is
high utility if the sum exceeds a given minutil. The sum of
all the iutils and rutils in the utility-list provides HUI-Miner
with the key information about whether the itemset should
be pruned or not.

Lemma 1. Given the utility-list of itemset X, if the sum
of all the iutils and rutils in the utility-list is less than a
given “minutil”, any extension X’ of X is not high utility.

Proof. For ∀ transaction t ⊇ X ′:

∵ X ′ is an extension of X =⇒ (X ′ −X) = (X ′/X)

X ⊂ X ′ ⊆ t =⇒ (X ′/X) ⊆ (t/X)

∴ u(X ′, t) = u(X, t) + u((X ′ −X), t)

= u(X, t) + u((X ′/X), t)

= u(X, t) +
∑

i∈(X′/X)

u(i, t)

≤ u(X, t) +
∑

i∈(t/X)

u(i, t)

= u(X, t) + ru(X, t),

suppose id(t) denotes the tid of transaction t, X.tids denotes
the tid set in the utility-list of X, and X’.tids that in X’, then:

∵ X ⊂ X ′ =⇒ X ′.tids ⊆ X.tids

∴ u(X ′) =
∑

id(t)∈X′.tids

u(X ′, t)

≤
∑

id(t)∈X′.tids

(u(X, t) + ru(X, t))

≤
∑

id(t)∈X.tids

(u(X, t) + ru(X, t))

< minutil.

For example, consider the utility-lists in Fig. 6(b).
Itemset {ec} should be pruned because the sum of all the
iutils and rutils in its utility-list, i.e., 24, is less than the
minutil, i.e., 30. Therefore, there is no need to check the 7
extensions of itemset {ec} (see Fig. 8).

4.3 HUI-Miner Algorithm
Algorithm 2 shows the pseudo-code of HUI-Miner. For

each utility-list X in ULs (the second parameter), if the sum
of all the iutils in X exceeds minutil, and then the extension
associated with X is high utility and outputted. According
to Lemma 1, only when the sum of all the iutils and rutils
in X exceeds minutil should it be processed further. When
the initial utility-lists are constructed from a database,
they are sorted and processed in transaction-weighted-
utility-ascending order (see Section 3.1). Therefore, all the
utility-lists in ULs are ordered as the initial utility-lists
are. To explore the search space, the algorithm intersects
X and each utility-list Y after X in ULs. Suppose X is
the utility-list of itemset Px and Y that of itemset Py, and
then construct(P.UL, X, Y ) in line 8 is to construct the
utility-list of itemset Pxy as stated in Algorithm 1. Finally,
the set of utility-lists of all the 1-extensions of itemset Px
is recursively processed. Given a database and a minutil,

Algorithm 2: HUI-Miner Algorithm

Input: P.UL, the utility-list of itemset P, initially
empty;
ULs, the set of utility-lists of all P ’s
1-extensions;
minutil, the minimum utility threshold.

Output: all the high utility itemsets with P as prefix.
1 foreach utility-list X in ULs do
2 if SUM(X.iutils)≥minutil then
3 output the extension associated with X ;
4 end
5 if SUM(X.iutils)+SUM(X.rutils)≥minutil then
6 exULs = NULL;
7 foreach utility-list Y after X in ULs do
8 exULs = exULs+Construct(P.UL, X, Y );
9 end

10 HUI-Miner(X, exULs, minutil);

11 end

12 end

after the initial utility-lists IULs are constructed, HUI-
Miner(∅, IULs, minutil) can mine all high utility itemsets.

4.4 Implementation Details
The sums of the iutils and rutils in the utility-list of an

itemset can be computed by scanning the utility-list. To
avoid utility-list scan, in the process of constructing a utility-
list, HUI-Miner simultaneously accumulates the iutils and
rutils in the utility-list. In addition, there is also no need to
bind each itemset to its utility-list. The itemsets represented
by all child nodes of a node in a set-enumeration tree have
the same prefix itemset. Therefore, for a 1-extension, its
extended item can be separated from its prefix itemset. We
slightly modify the utility-list structure when implementing
HUI-Miner. For example, the utility-lists in Fig. 7(b) are
implemented as those showed in Fig. 9. The first line in a
utility-list stores the extended item and the sums of the iutils
and rutils, and the prefix itemset is stored independently.

6 .0 -,

. -, /

/ -0 /

8 .1 ,

. -- ,

/ -0 ,

4@9:;D ;B9=A9B2 E 97 F

3DB9>898 ;B9= 5C= ?: ;CB;<A 5C= ?: @CB;<A

Figure 9: Utility-List Implementation

Another important detail is the processing order of items.
In previous algorithms, such as IHUPTWU and UP-Growth,
items are sorted in transaction-weighted-utility-descending
order, which can reduce the size of prefix-trees used in these
algorithms. However, IHUPTWU and UP-Growth process
items in transaction-weighted-utility-ascending order. The
processing order of items can result in the decrease in
the explored scope of the search space and thus speed an
algorithm up [15]. HUI-Miner adopts utility-lists as data
structure, and the size of utility-lists is constant, no matter
what order items are sorted in. Therefore, in HUI-Miner,
items are sorted in transaction-weighted-utility-ascending
order, and more important, processed in the same order.
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<DSDEDRH BKWH,L:- +CQDOR +=SHNR 9UI?HO @DV?HO

9FFKGHOSR 48552 23/072 357 22.7 40

;JDKO 52462 0001838 35/75 6.2 06/

;JHRR 480 2085 64 26 26

>PRDQDL 38748 88///1 3016/ 7.0 1387

@TRJQPPN 852 7013 008 12 12

AHSDKM 5/65 77051 0536/ 0/.2 65

C0/=3<0//> 5033 0///// 76/ 0/.0 18

C3/=0/<0//> 12685 0///// 831 28.5 66

Figure 10: Statistical Information about Databases

5. EXPERIMENTS
To evaluate the performance of HUI-Miner, we have

done extensive experiments on various databases, in which
HUI-Miner is compared with the state-of-the-art mining
algorithms. In this section, experimental results are
reported and discussed.

5.1 Experimental Setup
Besides HUI-Miner, our experiments include the following

algorithms: IHUPTWU (the fastest one among the
algorithms proposed in [5]), UP-Growth [23], and UP-
Growth+ [22]. The main procedure of IHUPTWU has been
introduced in Section 2.2. On the basis of IHUPTWU, UP-
Growth incorporates four strategies to lessen the estimated
utilities of candidate itemsets and thus reduces the number
of candidates. UP-Growth+, an improved UP-Growth
algorithm, can generate fewer candidate itemsets than UP-
Growth for a mining task. The less the number of candidate
itemsets is, the less the costs of the generation and utility
computation of candidates are. The three state-of-the-
art algorithms had been proven to be superior to other
algorithms, such as Two-Phase [18], ShFSM [12], DCG [11],
FUM [14], and DCG+ [14]. Further, we optimized the
three algorithms by transforming a mined database into
a database view similar to that in Fig. 4. The view is
implemented in memory, which can not only reduce the size
of the database but also speed utility computation up.

The four algorithms were implemented in C++ language,
used the same libraries, and were compiled using g++
(version 4.3.2). The experiments were performed on a
2.83GHz PC machine (Intel Core2 Q9500) with 4GB of
memory, running on a Debian (Linux 2.6.26) operating
system.

Eight databases were used in our experiments. Database
chain was downloaded from NU-MineBench 2.0 [2], in
which transaction records taken from a major grocery store
chain in California are contained. The other databases
were downloaded from FIMI Repository [1]. Databases
accidents, chess, kosarak, mushroom, and retail are real.
Synthetic databases T10I4D100K and T40I10D100K were
generated by IBM Quest Synthetic Data Generation Code.
Other than chain, the other databases do not provide item
utility (external utility) and item count for each transaction
(internal utility). Like the performance evaluation of
previous algorithms [5, 23, 22], external utilities for items
are generated between 0.01 and 10 using a log-normal
distribution and internal utilities for items are generated
randomly ranging from 1 to 10. Fig. 10 shows the statistical
information about these databases, including the size on
disk, the number of transactions, the number of distinct
items, the average number of items in a transaction, and
the maximal number of items in the longest transaction(s).

5.2 Running Time
The running time of the four algorithms on all databases

is depicted in Fig. 11. Running time was recorded by the
“time” command, and it contains input time, CPU time,
and output time. The output results of the four algorithms
are the same for a mining task, and they were written to
“/dev/null”. We terminated a mining task, once its running
time exceeds 10000 seconds.

When measuring running time, we varied the minutil
for each database. The lower the minutil is, the larger
the number of high utility itemsets is, and thus the more
the running time is. For example, for database chain in
Fig. 11(b), when the minutils are 0.004% and 0.009%, the
numbers of high utility itemsets are 18480 and 4578, and
the running times of HUI-Miner are 580.9 seconds and
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Figure 11: Running Time
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Figure 12: Memory Consumption

445.1 seconds, respectively. In addition, the curve for UP-
Growth almost totally overlaps the curve for UP-Growth+
in Fig. 11(a); the running time of IHUPTWU for any minutil
exceeds 10000 seconds for database chess, and thus there is
no curve for IHUPTWU in Fig. 11(c).
For almost all databases and minutils, HUI-Miner

performs the best. HUI-Miner is almost two orders of
magnitude faster than the other algorithms for dense
databases. For example, the running times of HUI-Miner
and UP-Growth+ are 35.8 seconds and 6302.3 seconds for
databasemushroom in Fig. 11(e), when the minutil is 2%. In
Fig. 11(h), HUI-Miner is slower than UP-Growth+ for high
minutils, and we found out in this case that UP-Growth+
generates very few candidate itemsets (only 2007 candidates
when the minutil is 0.6%); however, for low minutils,
HUI-Miner is even an order of magnitude faster than
UP-Growth+ (UP-Growth+ generates 178128 candidates
when the minutil is 0.35%.). For most sparse databases,
the performance superiority of HUI-Miner becomes very
significant when the minutil decreases. For example, for
retail in Fig. 11(f), the running times of HUI-Miner and
IHUPTWU are 15.3 seconds and 219.1 seconds when the
minutil is 0.045%, while their running times are 22.2 seconds
and 9758.0 seconds when the minutil is reduced to 0.02%.

5.3 Memory Consumption
Fig. 12 shows the peak memory consumption of the

four algorithms on all databases, in which each subfigure
corresponds to a subfigure in Fig. 11. Peak memory
consumption was recorded by the “massif” tool of the
“valgrind” software [3].

Except for database accidents in Fig. 12(a), HUI-Miner
always consumes less memory than the other algorithms.
The reason is that these algorithms have to consume a
very large amount of memory to store candidate high
utility itemsets during their mining processes, while HUI-
Miner does not. Generally, the memory consumption
of these algorithms is proportional to the number of
candidate itemsets they generate. For example, for database
T10I4D100K, IHUPTWU generates 3826202 candidate
itemsets and consumes 109.0 MB of memory while

UP-Growth+ generates 1007150 candidate itemsets and
consumes 50.22 MB of memory, when the minutil is 0.005%.
The number of high utility itemsets is only 313509 for
the mining task. HUI-Miner neither generates nor stores
candidate itemsets, and thus it consumes only 23.62 MB of
memory.

Another observation is that UP-Growth+ consumes more
memory than UP-Growth in some cases, for example, in
Fig. 12(b) and (d), although UP-Growth+ always generates
fewer candidate itemsets than UP-Growth. It is because
that each node in the prefix-trees used in UP-Growth+ holds
more information than that in the prefix-trees used in UP-
Growth [22]. When a database is sparse and large, the
size of a corresponding prefix-tree is relatively large, while
the number of candidate itemsets is relatively small. For
example, the size of sparse database kosarak is 49859KB,
but the numbers of candidate itemsets are only 80 and 74
for UP-Growth and UP-Growth+ when the minutil is 1.5%.

5.4 Processing Order of Items
The processing order of items significantly influences the

performance of a high utility itemset mining algorithm
[5]. As IHUPTWU, UP-Growth, and UP-Growth+ do,
HUI-Miner processes items in transaction-weighted-utility-
ascending order (see Section 4.4). To get the knowledge of
the performance difference for different processing orders,
we tested the running time of HUI-Miner on condition
that items are processed in transaction-weighted-utility-
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:HHLIJPTS 15, 20, 25, 30, 35, 40,

?>EBDFE 2953047 978170 378955 163363 74144 35113

EB.=RQVTK 184239 18761 1215 34 1 0

EB.=RQVTK- 178732 18192 1193 34 1 0

>E? 280 0 0 0 0 0

;KGLP 0/004, 0/005, 0/006, 0/007, 0/008, 0/009,

?>EBDFE 43971025 9478232 739627 558254 429745 345648

EB.=RQVTK 124509 82403 61215 48198 39637 33656

EB.=RQVTK- 72560 51523 40725 33966 29274 25868

>E? 18480 12244 9040 6920 5585 4578

;KJSS 18, 20, 22, 24, 26, 28,

?>EBDFE 453506887 283147997 181541329 118826006 79065869 53468011

EB.=RQVTK 50226806 22578752 9891125 4242057 1786383 702604

EB.=RQVTK- 31670472 13725409 5795829 2464762 957940 273424

>E? 34870 4872 230 0 0 0

@QSGRGM 1, 1/5, 2, 2/5, 3, 3/5,

?>EBDFE ... ... 246648 35740 14244 6979

EB.=RQVTK 27864 80 38 31 18 12

EB.=RQVTK- 660 74 38 31 18 12

>E? 48 20 15 10 8 8

AUSKRQQO 2, 2/5, 3, 3/5, 4, 4/5,

?>EBDFE 29593409 17342263 11985059 7396747 5981219 3741959

EB.=RQVTK 17594549 10295610 6383808 4361711 3122163 2349568

EB.=RQVTK- 16681744 9602355 6145020 4037680 2942177 2246587

>E? 3583596 1879818 1059350 640404 400137 256988

CJTGLN 0/02, 0/025, 0/03, 0/035, 0/04, 0/045,

?>EBDFE 3280836 695675 308951 170144 111500 79647

EB.=RQVTK 304128 112917 55037 35925 27208 22436

EB.=RQVTK- 27917 21047 17006 14279 12329 10781

>E? 8723 6026 4377 3340 2676 2212

D10?4<100@ 0/005, 0/01, 0/015, 0/02, 0/025, 0/03,

?>EBDFE 3826202 802793 335849 197697 133848 105685

EB.=RQVTK 2155382 421526 188067 115329 85544 70147

EB.=RQVTK- 1007150 226448 114948 78282 61451 51523

>E? 313509 81562 51457 40898 34092 29176

D40?10<100@ 0/35, 0/4, 0/45, 0/5, 0/55, 0/6,

?>EBDFE 4214124 2229232 1752536 1410616 1240654 1105830

EB.=RQVTK 1703398 1298224 1079166 912479 759925 541878

EB.=RQVTK- 178128 141242 127305 71366 5342 2007

>E? 20448 4618 328 147 28 19

Figure 14: Number of Candidate Itemsets & Number of Resultant High Utility Itemsets

descending order, lexicographic order, and transaction-
weighted-utility-ascending order, respectively. Fig. 13 shows
the experimental results on databases accidents and retail.
As we can see, the transaction-weighted-utility-ascending

order leads to the best performance. The reason is that the
processing order of items is capable of reducing the number
of sets of utility-lists for a mining task. To comprehend the
reason in depth, one can consult the related work in [15, 16].

5.5 Discussion
From above experiments, we can observe that HUI-Miner

outperforms the state-of-the-art algorithms.
To mine high utility itemsets, almost all existing

algorithms first generate candidate high utility itemsets and
subsequently compute the exact utility of each candidate
to identify high utility itemsets. To improve performance,
previous studies focus on how to reduce the number of
candidates, which can lead to the decrease in the costs of
both candidate generation and utility computation.
Fig. 14 shows the number of candidate itemsets the three

algorithms generate and the number of resultant high utility
itemsets. For database kosarak, when the minutils are
1% and 1.5%, the times of candidate generation are so
much (≫100000 seconds) that we had to terminate the
two tests. From Fig. 11, Fig. 12, and Fig. 14, one can
observe that the number of candidate itemsets generated
by an algorithm is proportional to the running time and
memory consumption of the algorithm. The state-of-the-art

algorithms have been able to efficiently reduce the number
of candidates. However, the number is still far larger than
the number of resultant high utility itemsets in most cases.
For example, IHUPTWU, UP-Growth, and UP-Growth+
generate 558254, 48198, and 33966 candidate itemsets, when
the minutil is 0.007% for database chain, but the number of
resultant high utility itemsets is only 6920.

Using the utility-list structure, the HUI-Miner algorithm
can mine high utility itemsets without candidate generation.
The distinct advantage of HUI-Miner is that it avoids
the costly candidate generation and utility computation.
For the above example, IHUPTWU, UP-Growth, and UP-
Growth+ have to process 551334 (= 558254− 6920), 41278
(= 48198 − 6920), and 27046 (= 33966 − 6920) candidate
itemsets, respectively. These algorithms not only generate
these itemsets but also compute their exact utilities on
1112949 transactions. However, these itemsets are discarded
finally. The potential advantage of HUI-Miner is that a
large amount of memory is saved. For example, the size of
database mushroom is only 0.92MB, but UP-Growth and
UP-Growth+ generate 17594549 and 16681744 candidate
itemsets, and consume 699.9 MB and 658.7MB of memory,
respectively (when the minutil is 2%.), and a large amount
of memory is used to store candidate itemsets. Although
the algorithms can be modified to swap candidate itemsets
to disk, the disk space requirement is also considerable, and
moreover, the algorithms’ performance will be degraded.
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6. CONCLUSION
In this paper, we have proposed a novel data structure,

utility-list, and developed an efficient algorithm, HUI-
Miner, for high utility itemset mining. Utility-lists provide
not only utility information about itemsets but also
important pruning information for HUI-Miner. Previous
algorithms have to process a very large number of candidate
itemsets during their mining processes. However, most
candidate itemsets are not high utility and are discarded
finally. HUI-Miner can mine high utility itemsets without
candidate generation, which avoids the costly generation
and utility computation of candidates. We have studied the
performance of HUI-Miner in comparison with the state-
of-the-art algorithms on various databases. Experimental
results show that HUI-Miner gains significant performance
improvement over these algorithms in terms of both running
time and memory consumption.

7. ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers.

Their helpful comments and suggestions have improved the
quality of the paper.

8. REFERENCES
[1] Frequent Itemset Mining Dataset Repository. http://

fimi.ua.ac.be/, 2012.

[2] NU-MineBench: A Data Mining Benchmark Suite.
http://cucis.ece.northwestern.edu/projects/

DMS/MineBench.html, 2012.

[3] Valgrind: A GPL’d System for Debugging and Profiling
Linux Programs. http://valgrind.org/, 2012.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In Proc. Int’l Conf.
Very Large Data Bases, pages 487–499, 1994.

[5] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K.
Lee. Efficient tree structures for high utility pattern
mining in incremental databases. IEEE Transactions on
Knowledge and Data Engineering, 21(12):1708–1721,
2009.

[6] B. Barber and H. J. Hamilton. Extracting share
frequent itemsets with infrequent subsets. Data Mining
and Knowledge Discovery, 7(2):153–185, 2003.

[7] A. Ceglar and J. F. Roddick. Association mining. ACM
Computing Surveys, 38(2), 2006.

[8] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern
mining: Current status and future directions. Data
Mining and Knowledge Discovery, 15(1):55–86, 2007.

[9] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A frequent-
pattern tree approach*. Data Mining and Knowledge
Discovery, 8(1):53–87, 2004.

[10] J. Hu and A. Mojsilovic. High-utility pattern mining: A
method for discovery of high-utility item sets. Pattern
Recognition, 40(11):3317 – 3324, 2007.

[11] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Direct candidates
generation: A novel algorithm for discovering complete
share-frequent itemsets. In Proc. Fuzzy Systems and
Knowledge Discovery, pages 551–560, 2005.

[12] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Efficient
algorithms for mining share-frequent itemsets. In Proc.
World Congress of Int’l. Fuzzy Systems Association,
pages 534–539, 2005.

[13] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. A fast algorithm
for mining share-frequent itemsets. In Proc. Asia-
Pacific Web Conf., pages 417–428, 2005.

[14] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Isolated items
discarding strategy for discovering high utility itemsets.
Data & Knowledge Engineering, 64(1):198–217, 2008.

[15] G. Liu, H. Lu, W. Lou, Y. Xu, and J. X. Yu. Efficient
mining of frequent patterns using ascending frequency
ordered prefix-tree. Data Mining and Knowledge
Discovery, 9(3):249–274, 2004.

[16] G. Liu, H. Lu, J. X. Yu, W. Wang, and X. Xiao.
Afopt: An efficient implementation of pattern growth
approach. In Proc. IEEE Int’l Conf. Data Mining
Workshop Frequent Itemset Mining Implementations,
2003.

[17] Y. Liu, W.-K. Liao, and A. Choudhary. A fast high
utility itemsets mining algorithm. In Proc. Utility-
Based Data Mining Workshop, pages 90–99, 2005.

[18] Y. Liu, W.-K. Liao, and A. N. Choudhary. A two-phase
algorithm for fast discovery of high utility itemsets.
In Proc. Pacific-Asia Conf. Knowledge Discovery and
Data Mining, pages 689–695, 2005.

[19] R. Rymon. Search through systematic set enumeration.
In Proc. Int’l Conf. Principles of Knowledge
Representation and Reasoning, pages 539–550, 1992.

[20] A. Soulet and B. Crémilleux. Adequate condensed
representations of patterns. Data Mining and
Knowledge Discovery, 17:94–110, 2008.
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