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ABSTRACT
Poor academic performance in K-12 is often a precursor to
unsatisfactory educational outcomes such as dropout, which
are associated with significant personal and social costs.
Hence, it is important to be able to predict students at risk
of poor performance, so that the right personalized inter-
vention plans can be initiated. In this paper, we report on a
large-scale study to identify students at risk of not meeting
acceptable levels of performance in one state-level and one
national standardized assessment in Grade 8 of a major US
school district. An important highlight of our study is its
scale - both in terms of the number of students included, the
number of years and the number of features, which provide
a very solid grounding to the research. We report on our
experience with handling the scale and complexity of data,
and on the relative performance of various machine learn-
ing techniques we used for building predictive models. Our
results demonstrate that it is possible to predict students
at-risk of poor assessment performance with a high degree
of accuracy, and to do so well in advance. These insights
can be used to pro-actively initiate personalized interven-
tion programs and improve the chances of student success.

Keywords
education; educational data mining; risk prediction; longi-
tudinal data analysis

1. INTRODUCTION
One of the primary goals of any education system is to

equip students with the knowledge and skills needed to tran-
sition to successful career pathways. How effectively educa-
tion systems around the world are able to meet this goal acts
as a major determinant of economic and social progress.

∗This work was done while the author was at IBM Research-
India.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623355.

In particular, K-12 reflects the most critical phase of an
individual’s lifelong learning, during which the opportuni-
ties for a successful future need to be created and nurtured.
It is in recognition of this fact that increasingly, educational
reforms focused around frequent and standardized testing of
K-12 students are gaining acceptance as a way to monitor
performance and progress at an individual and institutional
level [3, 4]. For many of these assessments, a passing score
is required to meet state or district standards for progres-
sion to the next grade level. Poor academic performance
in such standardized assessments can thus lead to unfavor-
able educational outcomes such as grade retention, and when
not adequately addressed, it can eventually trigger dropout
or sub-optimal career pathways, which are associated with
significant personal and social costs. For example, in the
United States, nearly 7,000 high school students drop out
of school each day; if the students who dropped out of the
class of 2011 had graduated, the nation’s economy would
have benefited from $154 billion in additional income over
the course of their lifetimes [11]. Hence, it is important to
identify students at risk of poor performance in major stan-
dardized tests, and to do so well in advance, so that the right
personalized intervention plans can be initiated to improve
performance.

Traditionally, K-12 educators (e.g. class teachers) have
relied on recent academic results of a student (e.g. in for-
mative tests in the current grade) along with an educator’s
general intuition gleaned from teaching similar students in
the past, to determine if the student might be at risk of
poor performance in an upcoming assessment. This makes
the process overly reliant on an educator’s experience level,
there is no objective quantification of the level of risk, and
the dependence on recent data to make a prediction for the
academic year may often not leave enough time to apply
the right level of intervention to adequately improve perfor-
mance. However, with the digitization of school records and
rapid uptake of digital tools for teaching and learning, vari-
ous aspects of a student’s longitudinal journey through K-12
are now captured and persisted in digital form. This offers
a rich repository of data that can be analyzed to detect pat-
terns associated with unsatisfactory educational outcomes,
derived from thousands of students who have progressed
through the system over the years, and taking into account
a holistic view of a student in terms of both academic his-
tory over a period of time, as well as other non-academic
attributes (e.g. related to attendance, demographics, be-
havior etc.) that may influence academic performance.
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The work reported in this paper has been motivated by
the need to develop scientific, robust predictive models for
at-risk students in a large K-12 school district in the US. An
increasing number of school districts now have substantial
volumes of historical data that have resulted from digitiza-
tion efforts over the last decade, spurred by legislation that
mandates implementation of longitudinal data systems and
usage of such data to improve instruction [4]. The district in
question - Gwinnett County Public Schools (also referred to
as GCPS in this paper), based near Atlanta, Georgia - is the
largest school system in the state of Georgia, serving more
than 168,000 students across 132 schools in 2013-14 [1]. The
availability of a district-wide common data system allows the
progress of students to be tracked longitudinally across its
77 elementary, 26 middle and 19 high schools, besides 4 char-
ter schools and 6 other special schools. In the course of this
K-12 journey, students take a variety of standardized assess-
ments, both state-level and national-level, and detailed per-
formance data in these tests are persisted within the GCPS
data warehouse. In addition, a variety of other data about
the student such as enrollment history, various demographic
indicators, discipline/behavior etc. are also stored. Over
the years, such data on more than 200,000 students have
been made available in the GCPS warehouse, which presents
both a challenge in terms of its sheer volume, variety and
complexity, and also a tremendous opportunity to develop
sophisticated models of performance that can be used to
improve teaching and learning programs.

Within this overall context, our specific objective was
to develop predictive models to identify at-risk students in
Grade 8, for two disciplines mathematics and science, in
two standardized tests – a state-level assessment called Cri-
terion Referenced Competency Test (CRCT) and a national
assessment called Iowa Test of Basic Skills (ITBS). Grade 8
was specifically chosen because of its significance in the K-12
journey – as the final year in middle school, preceding the
first year of high school. The specific assessments and dis-
ciplines were selected based on their importance to GCPS.
The research and experimentation were driven by the follow-
ing questions: (i) how accurately (and using which feature
sets) can we predict students who fail Grade 8 CRCT and
ITBS Mathematics and Science tests? and (ii) how early (by
which grade), can we make these predictions with reasonable
accuracy? The first question is important because unless at-
risk students and not-at-risk students are differentiated with
reasonable accuracy, significant resources may be expended
on misaligned interventions for these student cohorts, with-
out ultimately achieving the desired improvement in success
rates. The importance of the second question stems from
the fact that the earlier we are able to accurately identify
an at-risk student, the more the time available to the school
to apply interventions to reduce the risk of failure.

Our models are built based on the longitudinal data de-
rived from the GCPS data warehouse on students who have
appeared for CRCT and ITBS Grade 8 assessments in math-
ematics and science over the last several years, which num-
bered 58,361 and 43,306 students respectively for these two
tests. Mean imputation was used to address missing val-
ues in the longitudinal trajectories of the students, and the
models were developed employing the techniques of Logistics
Regression, Naive Bayes and Decision Tree, using the IBM
SPSS Modeler [2] and Weka [14]. The data attributes used
for deriving the features of the predictive models relate to
performance in various assessments in mathematics, science

and related disciplines, several demographic indicators (e.g.
gender, ethnicity, free or reduced meal eligibility, special ed-
ucation/gifted) and behavioral indicators (e.g. suspensions).

Our key findings may be summarized as follows:

• Our results indicate the it is possible to predict stu-
dents at-risk of failing Grade 8 CRCT and ITBS as-
sessments in Mathematics and Science with a high level
of accuracy and balance between differentiating at-risk
students and not-at-risk students. Of the algorithms,
logistic regression gave the best results overall.

• We also observe that it is possible to predict success/failure
in the Grade 8 assessments as early as Grades 4 and 5,
with data from subcequent grades further improving
the effectiveness of the predictions

• In terms of features, longitudinal test scores from ear-
lier grades emerge as a strong predictor, while the
set of demographic indicators taken together, are able
to achieve reasonably high prediction performance as
well.

The rest of the paper is structured as follows: in Section
2, we discuss related work. A detailed description of the
data sets used for the analysis and its processing and feature
engineering are presented in Section 3. Section 4 discusses
the prediction and experimental set-up, including the data,
evaluation metric and the features used. Section 5 presents
the experimental results, while Section 6 has a discussion
on some of the insights from the results. Finally, Section 7
outlines future work directions, and Section 8 concludes the
paper.

2. RELATED WORK
There is a wealth of research available on the factors that

contribute to student risk of academic performance and
dropout. With the increasing availability of education re-
lated longitudinal data within K-12 and Higher Education
institutions, this line of research is now becoming increas-
ingly data-driven and evidence-based. Our study adds to
this body of work, from which we review a few selected pa-
pers below to put our research in context.

Previous research has studied student risk in terms of fac-
tors such as low socioeconomic status, living in a single par-
ent home, changing schools at non-traditional times, below
average grades at specific school levels, being held back in
school through grade retention, having older siblings who
left high school before completion and negative peer pressure
[19]. Other external factors influencing student risk, such as
teacher engagement [7] and smaller class size [20] have also
been studied. Several typologies have been developed for de-
scribing students at risk. Fortin et al. [12] classified at-risk
students into four different subgroups: the covert behavior
type, the uninterested in school type, the school and social
adjustment difficulties type and the depressive type, thereby
highlighting the importance of school, family and personal
factors in the emergence of risk. Summarizing twenty–five
years of research on influences of dropout, Rumberger and
Lim [18] delineated rigorous empirical results into a typol-
ogy of predictor categories. These categories included: 1)
individual–level factors which consisted of background, at-
titudes, behaviors, and performance, as well as 2) influen-
tial, but perhaps less commonly considered family–, school–
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and community–level variables. At the student–level, back-
ground was focused upon demographic and health variables
as well as past school experiences and performance. These
influences impacted attitudes which were believed to impact
behaviors and, in turn, academic performance. Such find-
ings have influenced our selection of predictors of student
performance in our study, where we have leveraged a variety
of demographic and behavioral data of students, in addition
to their historical academic performance record, to predict
future performance.

In recent years, due to the digitization of school records
and availability of instrumented digital learning environ-
ments, a wealth of student related information is now avail-
able in data warehouses, providing a fertile ground for edu-
cational data mining research. The Signals project at Pur-
due University [5] is a notable effort in this direction. Sig-
nals combines online academic behavior of students, such as
whether they opened or completed assignments and exer-
cises, with a student’s academic performance such as stan-
dardized test scores, high school GPA and current grades, to
infer the risk level of the student in the course. Other online
systems make use of students’ social engagement with their
peers in the context of work, in addition to content-access
patterns, to identify disengaged learners who can potentially
be at-risk [10]. Some key variables used in predicting stu-
dents at risk in online courses typically include total number
of discussion messages posted, total number of mail messages
sent, and total number of assessments completed. However,
these models are limited in their generalizability as they fo-
cus on fully online courses alone [17]. In our current study,
data from digital learning environments was not available for
analysis, and we intend to extend our work with such data
when available, to investigate how it influences the predic-
tive power of our models.

In a recent study, Chen and Elliott [8] have reviewed previ-
ous research which highlights the role of early identification
of students at risk. Specifically, their study found that any
student who had passed the key predictor course module
seemed more likely to progress to the second year success-
fully. Similarly, any student who failed the predictor module
was more likely to repeat some of the first year modules, re-
peat the entire first year, or, even fail the course, i.e., drop
out from a course. This pattern was valid for all of the
records of the five consecutive academic years considered for
the study. Our study adopts a similar approach where we
attempt to examine performance (test scores) in the current
grade based on test scores in previous grades, both at the
micro (test strand) level and the macro (subtest) level. We
also demonstrate how risks for Grade 8 standardized tests
can be predicted with a reasonable degree of accuracy a few
years in advance.

At the high school and undergraduate level, Hershkovitz
et al [15] used a learning graph which represents the stu-
dent’s learning over time and was developed using a knowledge–
estimation model. This model infers the degree of learning
that occurs at specific moments rather than the student’s
knowledge at those moments. It showed substantially better
student–level cross validated prediction of student’s future
learning than previous approaches. However, the study used
a limited student sample for its research (n=181 undergrad-
uate and high school students) thus limiting the generaliz-
ability of its conclusions. In a study on students in tertiary
education by Gray, McGuinness and Owende [13], models of

academic performance were found to achieve good predictive
accuracy when younger students and mature students were
modeled separately. Further, students with missing data
were removed from analysis and the study was carried out
with students having complete data. Missing data is an un-
avoidable characteristic of any large real-life data set, and
hence we addressed the issue in our research by imputing
the missing data with the mean, rather than only selecting
a small number of students with complete data on a few
features. Using Bayesian networks, Vihavainen et al. [21]
demonstrated that students with a higher likelihood of fail-
ing their mathematics course could be detected at an early
phase of their studies using data on their programming be-
havior. The sample comprised a large number of program-
ming snapshots but only from 58 first year computer science
students. In a recent study, Erdos et al [9] studied the ex-
tent to which first language (L1) predictors can be used to
predict risk for French (L2) reading and language learning.
Analyses of 86 kindergarten children revealed factors such
as phonological awareness, phonological access and letter–
sound knowledge in L1 were significant predictors of risk
for reading difficulties in L2. Similar research has examined
the relationship between oral reading fluency and success
on state standardized assessments [16]. Our work builds
on such examples of the use of data mining and machine
learning techniques to predict academic risks, but is char-
acterized by very large real-life data sets e.g. models built
from more than 58,000 students drawn from 132 schools, and
leveraging 342 features, in the case of ITBS success predic-
tion. This gives a very broad data and evidence foundation
to the study, which contributes to the robustness and gen-
eralizabilty of the results.

A review of research considered the predictive properties
of 110 indicators of dropping out of high school across 36
studies and classified these on several dimensions [6]. Of
these dimensions, the authors argued for sensitivity (the
proportion of accurately identified future dropouts (or non–
graduates) – “true positives”) and specificity (the proportion
of accurately identified future graduates – “true negatives”)
as the most important qualities of an indicator. We have
adopted these metrics when evaluating the effectiveness of
our predictive models.

3. DATA DESCRIPTION
Gwinnett County Public Schools (GCPS) is one of the

largest school systems in the US, consisting of 132 schools
and serving more than 168,000 students at present. A vari-
ety of data related to students, teachers, as well as learning
and assessment activities is collected from each of the con-
stituent schools and collated into a central data warehouse,
offering a rich repository that can be mined for insights.
A snapshot of this data warehouse was made available to
us, which we use as the source of data for our analysis.
The data snapshot consists of over a hundred tables stor-
ing various types of data including student, teacher, school,
and test (assessment) data. These four broad categories are
shown in Fig.1. The most important category of the avail-
able data (for the purpose of this paper) is the ‘Students’
category, which is a group of tables storing student data like
enrollment, demography, test performance, course history
and their performance in various national and state level
tests they have taken so far. For the privacy of students
and teachers whose data is captured, their personal infor-
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mation was anonymized by replacing it with hypothetical
names and addresses before the data set was made available
for this study.

Figure 1: An Overview of the Available Data

3.1 Background On Tests and Defining Risk
It is important to understand the structure of the tests,

as it will help us explain the features we use, our defini-
tion of risk, as well as understand some of the missing data
challenges later in the section. Every “test” or assessment
has several “sub-tests”. For example, the Criterion Refer-
ences Competency Test (CRCT) is a test which has several
sub-tests like mathematics, science and literature. Every
sub-test further consists of different “strands”. For example,
mathematics has strands like algebra and geometry. All the
test scores in the data are available both at sub-test and
strand levels. Note that some tests only have sub-tests and
do not have strands (for example, CogAT).

Since 2005-06, CRCT has been Georgia’s annual assess-
ment for determining how well students have acquired the
skills and knowledge described in the Georgia Performance
Standards (GPS). The CRCTs are currently taken across
grades 3-8. In 2012-13, the CRCTs transitioned to include
Common Core (CC) based items and into the (CCGPS/GPS)
version. For our study, we consider the GPS version of
CRCT so as to have a comparable sample of students.

Iowa Test of Basic Skills (ITBS) provides the opportu-
nity for comparison with a nationally representative group
of peers. Through ITBS, GCPS assesses students in grades
3, 5, and 8 in the areas of reading, written expression, vo-
cabulary, conventions of writing, mathematics, science, and
social studies.

The Cognitive Abilities Test (CogAT) is an assessment de-
signed to measure acquired reasoning abilities in students,
covering areas most linked to academic success in K-12 (ver-
bal, quantitative, non-verbal). For this reason, we used Co-
gAT results as predictors for performance in other assess-
ments like CRCT and ITBS.

CRCTs measure performance based on predefined ranges
of scores. CRCTs are structured so that the they range
from 650–900s. Scores at or above 850 indicate exceeding
standards, those at or above 800 indicate performance that
meets test standards, where as those below 800 indicate be-
low test standards performance. We consider a student to
be at risk, if he scores below 800 in CRCT in the subtest of
interest (mathematics or science). ITBS proves percentile
ranks (PR) – which indicate rank within a distribution and
when used with a distribution of nationally–representative
peers, support inferences of relative national performance.

For our analysis, we use the national percentile ranks as
an indicator of performance in the test. Being a norm-
referenced test, there are no predefined performance ranges
unlike CRCT. Our subject matter expert from GCPS rec-
ommended a threshold of 25 percentile to mark the risk for
ITBS. We derive our target risk variables by putting corre-
sponding thresholds on grade 8 CRCT and ITBS scores as
we intend to predict risk of students performing poorly in
grade 8.

3.2 Missing Data
All together, the data warehouse contains historical data

of over 200,000 students. However, the data is not consistent
both within and across data categories. For example, a stu-
dent’s performance in CRCT may be available for grades 4-
8. However, ITBS scores might be available only for grades
3 and 5. There may be several reasons for such missing
data. Students change counties and schools multiple times
during the K–12 period. For the period when students are
not part of the county, the data of their performance may
not be available. A student may have not taken certain as-
sessments. Education standards change from time to time,
and so do the tests associated with them, as discussed for
the case of CRCT test. Finally, data warehouse snapshot
available to us may not have the complete historical data
available to the school.

We now present the data processing and feature engineer-
ing pipeline which we follow to create data sets suitable for
our prediction task, considering the missing data challenges.

3.3 Data Processing and Feature Engineering
We divide the task of extracting useful data from the data

warehouse and converting it into usable datasets into three
main phases.

3.3.1 Creation of Merged Data
As described earlier, the data warehouse contains over

hundred tables. Unfortunately, the Student data which we
are interested in is scattered across several tables. The first
phase consists of creating a data set with features extracted
and engineered from various tables and columns in the data
warehouse. This phase (Fig.2) involves three main stages.

Figure 2: First Phase of Data Processing

Firstly, we create Longitudinal Features Data. This stage
involves merging the different tables storing data on sub–
tests and strands, as well as mapping performances to the
corresponding grades in which students took the tests. This
results in intermediate Longitudinal Performance Data, which
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contains about 19 million records as it consists of all the per-
formances of every student. We use SPSS Modeler streams
[2] to restructure the data so as to generate features for
each student from the Longitudinal Performance Data. Cur-
rently, we only consider CRCT, ITBS and CogAt test fea-
tures in this stage. Note that these features include both the
sub-test level and the strand level scores, when applicable.
The Longitudinal Features Data contains data for 158,282
students and altogether 516 different columns each contain-
ing a specific test score. However, it is important to note
that large amount of entries in this data are missing and we
shall discuss how we handle this in the final phase of data
processing.

The second stage involves creation of the Student Profile
which contain features engineered from the demographics,
discipline history and absenteeism history. While the demo-
graphic features like Gender, Ethnicity, Free Meal, Gifted
and Special Education Needs are available straight from the
warehouse tables, features like ‘Number of Discipline In-
cidents’, ‘Number of Suspensions’ and ‘Number of Absent
Days’ were created after aggregating discipline incidents and
absenteeisms reported.

In the third stage, we simply merge the Longitudinal Fea-
tures and the Student Profile Features, resulting in a Merged
Data set which contains several missing rows and columns
from the Longitudinal Features Data.

3.3.2 Creation of Target Variable Dependent Data
The second phase involves creating target variable spe-

cific data sets from the Merged Data set obtained from the
first phase of data processing. Firstly, we select only those
students who have no missing values for the target variable.
For example, when the target variable is CRCT 8th Grade
Math sub–test, we discard all those students whose data for
this target variable is missing. After this step, we discard
features which have more than 80% missing values. This re-
sults in 58,707 students with 342 features for ITBS test, and
43,310 students with 282 features for the CRCT test. Note
that though some of the columns may contain as low as 20%
values, the fact that our data covers a very large number of
students ensures that at least 11,741 samples exist for each
feature in the ITBS set and 8,662 samples for the CRCT
set. Nonetheless, since most of the standard classifiers do
not work with missing data set, we impute the missing val-
ues in the third phase.

3.3.3 Imputation of Missing Features
To make our system robust, we handle missing data which

routinely exists in data warehouses of the scale similar to
that of GCPS. Moreover, none of the students contain all
the features in our data set. Therefore, creation of a com-
plete data set containing features ranging over all the differ-
ent grades is not possible. For the sake of simplicity in terms
of method, we impute the missing values using mean value
imputation. This is a common imputation technique which
simply replaces each missing value with the mean of the fea-
ture. However, many advanced imputation techniques exist
and exploring them for our system remains a work to be
done in future.

4. RISK PREDICTION AND EXPERIMEN-
TAL SETUP

4.1 Data
We created data sets for 3 different tasks as below to

demonstrate that our approach is generalizable to various
student risk prediction tasks:

1. Predicting risk of poor performance in CRCT grade 8
Mathematics subtest

2. Predicting risk of poor performance in CRCT grade 8
Science subtest, and

3. Predicting risk of poor performance in ITBS grade 8
Mathematics subtest.

During the actual experimentation, we excluded all the
features related to grade 8 or above, to account for the fact
that prediction will be done only using grade 7th or below
features. As discussed in earlier sections, we define our risk
(derive our target risk labels) using thresholds on CRCT and
ITBS grade 8 Math/Science scores. Thresholds used are 800
for CRCT and the 25 percentile for ITBS. We address the
problem of predicting risk by transforming this into a binary
classification problem, where at-risk students are labeled as
positive samples and non-risk students labeled as negative
samples. As a preprocessing step, we standardized all the
features to mean value of 0 and standard deviation of 1.

In our experiments, we used 5-fold cross validation set-
tings to evaluate the accuracy of predictions made in var-
ious tasks. In this setting, the entire data set for a given
task is divided into 5 equal parts. Prediction experiment is
repeated 5 times, each time keeping one of the 5 parts as
evaluation data and the rest as training data to build pre-
diction model. In the end evaluation results on all 5 parts
are accumulated together to compute the overall prediction
accuracy.

4.2 Prediction
We used binary classifiers as risk prediction models. Specif-

ically we used various implementations of classifiers in SPSS
[2] and WEKA [14] with their default settings, such as logis-
tic regression, naive bayes, decision tree and decision table.
All the logitudinal features available per student are used
as set of input features to predict a binary output namely,
whether a student is at risk in various tasks listed in previous
section.

4.3 Evaluation Metric
The ITBS data set contains 58,361 samples containing

15.3% positive samples and 84.7% negative samples. This
shows the between-class skew that exists as students with
such extreme risk are naturally rare to find. Similar is the
case for the CRCT data set – which contains 43,036 stu-
dents including 10.7% positive and 89.3% negative samples.
This heavy skew in data has important implications on the
evaluation criteria.

As described earlier, student risk prediction is effectively a
binary classification task aimed at categorizing students into
two groups: 1) risk and 2) no-risk, depending upon whether
a student is likely to perform poorly in an important ex-
amination or not. Since the number of students falling into
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risk category is typically smaller, a simple classifier where all
the students are assigned to no-risk class is expected to give
high classification accuracy, in spite of the fact that it would
result in very poor (0%) risk class prediction accuracy. For
this reason, in this paper, we have used receiver operating
characteristic (ROC) curve to measure the prediction per-
formance. ROC curves show a trade-off achieved between
true positive rate of the risk category (sensitivity) and false
positive rate of the no-risk category (specificity) for various
classification thresholds applied on classifier class probabil-
ity outputs (see Figure 3 for a sample ROC curve plot). True
positive (TP) rate is the percentage of actual risk students
correctly categorized into risk category. False positive (FP)
rate is the percentage of actual no-risk students wrongly
categorized into risk category. TP rate is expected to be
high for low class probability thresholds. However, this is
expected to also result in high FP rate. On the other hand
a high probability threshold is expected to result in lower
TP and FP rates. An example ROC curve obtained for our
task can be found in Figure 3.

Typically in practical systems, depending upon the task re-
quirement, a best class probability threshold is chosen to
achieve one of TP rate or FP rate requirements. However, in
this paper, we use area under ROC curve (AUC-ROC) as a
measure of overall prediction performance. Increase in AUC-
ROC could be achieved by pushing the ROC curve shown
in Figure upward left, which in turn means an improved TP
and FP rates for a given class probability threshold. AUC-
ROC typically varies from 0.5 to 1.0. A simple classifier
choosing one of the class labels (say the majority class la-
bel) as class output would achieve an AUC-ROC value of
0.5.

4.4 Features Used
At the end of the data processing (as described in Section

3.3), total number of features available for CRCT risk pre-
diction is 235 and for ITBS risk prediction is 280. Based
on the description given in Section 3 , these features can be
grouped into categories based on their type. Specifically we
have grouped these features into following broad categories:

• Scores: scores obtained by students in their past grades
from 1 to 7 in various tests including CRCT, ITBS and
CogAt.

• Demography: student demography information such
as gender, ethnicity, free meal, gifted and special edu-
cation.

• Behavioral: information recorded about student be-
havior such as number of absent days, number of sus-
pensions and number of discipline incidents.

We further grouped the score features into categories based
on the grade at which the score is obtained (such as grade
1, grade 2, ..., grade 7) and the subject in which the score
is obtained (such as maths, science, literature and others).

5. EXPERIMENTS AND RESULTS
In this section we discuss results of experiments performed

to evaluate the student risk prediction system developed for
GCPS. These experiments are aimed at two goals: 1) to
measure risk prediction performance (described in Section
5.1), and 2) to analyze the importance of various aspects

of student data and prediction in order to derive insights
that would be of potential value to the educational institu-
tions. Specifically, in such analysis we aim to explore two
different aspects namely: data and prediction that might be
of potential interest to educational institutions such as: 1)
Feature importance (described in Section 5.2, and 2) Early
prediction of the risk (described in Section 5.3).

5.1 Risk Prediction Performance
Table 2 shows a comparison of AUC-ROC values obtained

using various classifiers for risk predictions in CRCT 8th
grade Mathematics, CRCT 8th grade Science and ITBS 8th
grade Mathematics. We used various classifier implemen-
tations in SPSS [2] and Weka [14] with their default set-
tings. For all the tasks, a relatively simpler logistic regres-
sion model is able to consistently achieve best prediction
accuracy. Hence, we have chosen to use logistic regression
model in all our further experiments. As discussed in Section
4.3, ROC curve is a trade of between true positive (TP) and
false positive (FP) rates. An example ROC curve obtained
using logistic regression model for CRCT 8th grade Mathe-
matics risk prediction task is shown in Figure 3. Typically,
educational institutions want to keep the incorrect predic-
tion of true risk students as low as possible. This in turn
means a specification of required TP rate for the prediction
task. A preferable TP rate for GCPS we are working with
is 90%. Table 1 shows FP rate we could achieve using the
logistic regression classifier for a minimum TP rate of 90%
for various prediction tasks.

Task Probability True Positive False Positive
Threshold TP, in % FP, in %

CRCT 8th Mathematics 0.06 90.5 23.8
CRCT 8th Science 0.18 90.0 24.7
ITBS 8th Mathematics 0.1 90.7 28.8

Table 1: Probability threshold used to achieve minimum
true positive (TP) of 90% in risk prediction. Actual values

of TP and FP achieved for the thresholds used are also
given.

Classifier CRCT 8th Grade CRCT 8th Grade ITBS 8th Grade
Mathematics Science Mathematics

Naive Bayes 0.744 0.739 0.702
Decision Tree 0.822 0.774 0.766
Decision Table 0.933 0.902 0.893
Logistic Regression 0.924 0.907 0.896

Table 2: Comparison of classifier performances for risk
prediction in CRCT 8th grade Mathematics, CRCT 8th

grade Science and ITBS 8th grade Mathematics.

5.2 Feature Importance
In Section 5.1 we used all available student features in

order to predict risk with highest accuracy. However, edu-
cational institutions are typically interested not just in the
overall prediction but also in exploring relative contribu-
tion of various features. Particularly, they are interested in
finding out a subset of features that are more indicative of
potential risk than others. For this purpose, we have per-
formed a feature-wise analysis of ability to predict.

Table 3 shows a performance comparison of the various
feature groups described in Section 4.4. Among the broader
feature groups, score features achieve the best prediction ac-
curacy with performance almost to similar that of the entire
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Figure 3: ROC curve for risk prediction using logistic
regression for CRCT 8th grade Mathematics

feature set. This strengthens the fact that the past scores
are largely indicative of the future test performance. Inter-
estingly, the small set of demography features (5 features)
are also able to achieve a reasonably good accuracy, point-
ing to the fact that specific patterns of demography features
are typically indicative of a potential risk. However, behav-
ioral features do not seem to correlate well with the future
risk. In fact, further examination of the behavioral features
show that only a few number of students are recorded for
behavioral issues. Among individual demography features,
ethnicity and special education needs achieve best accura-
cies. Table 3 also shows a comparison of importance of past
subject-wise score features in predicting risk for 8th grade
ITBS Mathematics. Clearly the past Mathematics scores
are able to make better prediction than the other subject
scores.

Feature Type CRCT 8th Grade ITBS 8th Grade
Mathematics Mathematics

All Features 0.924 0.896
All Scores 0.902 0.882
All Demographics 0.866 0.814
All Behavioral 0.576 0.559
Scores - Maths - 0.871
Scores - Science - 0.828
Scores - Language - 0.846
Scores - Others - 0.829
Demography - Gender 0.547 0.537
Demography - Ethnicity 0.660 0.668
Demography - Gifted 0.622 0.630
Demography - Free Meal 0.646 0.640
Demography - Special Education Needs 0.721 0.637
Behavioral - Absence 0.537 0.542
Behavioral - Suspensions 0.588 0.578
Behavioral - Incidents Reported 0.583 0.569

Table 3: Comparison of feature level risk prediction
performance for CRCT 8th grade Mathematics and ITBS

8th grade Mathematics.

5.3 Early Prediction of the Risk
Educational institutions are typically interested in pre-

dicting students-at-risk as early as possible so that they can
pro-actively adopt early intervention plans to prevent po-
tential failures. For this purpose, we investigated prediction
of potential risk at 8th grade using only the lower grade
features. Figures 4 and 5 show results of such prediction.
In fact, in these figures, risk prediction performance using
aggregated features as well as individual features are shown
together for comparison. In case of aggregated features, all

the score features from grades equal to or less than that men-
tioned on the x-axis are used for prediction whereas in case
of individual features, scores only from grades mentioned
in x-axis are used. The results show that we are able to
make reasonably accurate predictions (ROC AUC of more
than 0.8) as early as 4th grade for 8th grade performance.
Also the prediction accuracy improves with the incremental
aggregation of score features from lower grades. Individual
scores from the recent past are also good predictors of the
risk. However, the aggregated features are always able to
predict with higher accurately than the individual features.

Figure 4: Early risk prediction performance for CRCT 8th
grade Mathematics. In case of aggregated features all the

score features equal to or less the grade mentioned in
x-axis are used. For comparison, performance using

individual grade scores is also given which uses just the
scores from grades mentioned in the x-axis.

Figure 5: Early risk prediction performance for ITBS 8th
grade Mathematics. In the case of aggregated features, all
the score features equal to or less than the grade mentioned
on the x-axis are used. For comparison, performance using

individual grade scores is also given which uses just the
scores from grades mentioned on the x-axis.
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6. OBSERVATIONS AND INSIGHTS
In this section we discuss some of the insights derived

from our experimental results that have potentially valuable
implications for educators and industry practitioners.

First, our results showed that a student’s risk of poor per-
formance can be predicted with reasonable accuracy (ROC
AUC of more than 0.8) in as early as grade 5. Such early pre-
diction can allow teachers sufficient time and fewer resources
to take remedial actions in a student’s learning path. Ad-
ditionally, we see that as the grade of prediction increases,
the ROC AUC steadily increases. Apart from predicting
risk with the aggregated features at a given grade (features
of grades 5 and below), we also predicted the risk using in-
dividual grade features (features of grade 5). Our results
showed that grade 7 features are most relevant, whereas the
relevance of the earlier grades sequentially follow.

Second, we showed comparisons between several groups of
features by building prediction models individually on these
groups. While score features gave the best ROC AUC, de-
mographic features were also found to be important. Yet,
more in-depth examination of behavioral features could prove
a useful avenue for further research. Our results also showed
that while the Math features are most predictive of the risk
in grade 8 Math, other subjects are also important predic-
tors.

Third, the solid performance of the logistic regression model,
when evaluated against other models, may be relevant as the
model is more amenable to coefficient-by-coefficient under-
standing of variable influences. Additionally, the selection
of classifier threshold in a realistic setting is important. Our
results showed that a good balance between the true positive
and false positive rates can be achieved.

In sum, the breadth of features, extent of data, and ap-
proach to modeling make this effort unique and potentially
very informative for educational research and practice.

7. FUTURE WORK
We plan to continue our this work towards two fronts: 1)

to improve the overall prediction accuracy, and 2) to perform
more analysis aimed at deriving further valuable insights for
educational institutions.

As described in earlier sections, the data used for predic-
tion contain several missing values. Currently we use mean
imputation to approximate the true values of those missing
entries. This is a crude approximation and hence is likely to
result in noisy predictions. More sophisticated methods to
impute missing values are likely to improve the prediction
accuracy further.

Currently we are building only one classifier per predic-
tion task for the entire student data. However a divide-
and-conquer approach of grouping students into clusters and
building a prediction model for each cluster is likely to im-
prove the accuracy further. An interesting aspect to explore
in this direction is to group the students’ data based on a
subset of features that yield optimal risk prediction perfor-
mance.

Apart from the feature analysis reported in the earlier
section, educational institutions would be interested in an
explanation of how various predictions were arrived at for
each student. This requirement in our system could simply
translate into an assignment of importance weights to var-
ious features in terms of their role in prediction outcome.
Towards this goal, we plan to investigate a detailed feature

level discriminant analysis. In addition, exploring alternate
models such as hierarchical prediction models might provide
an opportunity to back-trace local decisions made at various
levels based on local features, thereby making it possible to
derive an explanation of why a particular decision is made.

8. CONCLUSIONS
In this paper, we have reported on a large-scale study to

predict students at risk of not meeting acceptable levels of
performance in national and state-level Grade 8 standard-
ized tests in Mathematics and Science. This study involved
one of the largest school districts in the US (GCPS). Us-
ing a rich set of predictors related to student demographics
and behavior, as well as longitudinal data on test scores
through the different grades, we constructed risk prediction
models that are able to identify students at risk with a high
degree of accuracy. Through experimental evaluation, we
also showed that the models strike a good balance between
identifying and over identifying students at risk. Other key
observations from our experiments include: Predictions for
Grade 8 performance may be made with reasonable confi-
dence as early as Grade 4, with data from subsequent grades
further improving the accuracy. Amongst the features, lon-
gitudinal data on test scores are highly predictive of future
success/failure, while a set of demographic features such as
ethnicity, disability and free meal, when taken together, are
able to achieve reasonably high prediction accuracies as well.
Behavioral data do not come up as a strong predictor for
performance in this study, and further work is needed to
investigate the way behavioral data are collected and inter-
preted to understand if and why this is actually the case.

Overall, our study shows that longitudinal data-driven
risk models for academic performance in standardized tests
can lead to robust and early predictions, thereby making it
possible to initiate targeted personalized intervention plans
well in advance to mitigate the risks and shift a student’s
learning trajectory towards desired outcomes.
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