ORGANIZATIONAL CHART INFERENCE

Speaker: Jim-An Tsai

Advisor: Jia-ling Koh

Author: Jiawei Zhang, Philip S. Yu, Yuanhua Lv

Date: 2016/1/7

Source: KDD'15

OUTLINE

- Introduction
- Problem Proposed
- Method
- Experiment
- Conclusion

Introduction

ENTERPRISE SOCIAL NETWORK

Inference of Organizational Chart

OUTLINE

- Introduction
- Problem Proposed
- Method
- Experiment
- Conclusion

MACRO-LEVEL

C: Unregulated Horizontal Structure

MICRO-LEVEL

D: Unregulated Subordinate Allocation

CREATE(CHART RECOVER)

Figure 3: The framework of Create.

OUTLINE

- Introduction
- Problem Proposed
- Method
- Experiment
- Conclusion

Social class

$$c(u) = \begin{cases} 1, & \text{if } u \text{ is the CEO;} \\ c(m(u)) + 1, & \text{otherwise.} \end{cases}$$

where m(u) represents the direct manager of u.

o Class Transcendence Social Link

$$p\left(c(u),c(v)\right) = \begin{cases} 0, & \text{if } c(u) > c(v) \\ c(v) - c(u) + 1, & \text{otherwise.} \end{cases}$$

The class transcendence penalty introduced by all social links (i.e., S) in the ESN can be represented as

$$\begin{split} p\left(c(\mathcal{U})\right) &= \sum_{(u,v) \in \mathcal{S}} p\left(c(u),c(v)\right) \\ &= \sum_{(u,v) \in \mathcal{S}} \max\{c(v) - c(u) + 1,0\}. \end{split}$$

Matthew Effect based Constraint

The matthew effect based constraint on users u and v can be represented as $c(u) \le c(v)$ if $|\Gamma(u)| \ge |\Gamma(v)|$.

Chart Depth Regulation Constraint

$$\sum_{u \in U} c(u) \ge \alpha \cdot |U|,$$

Optimal regulated social stratification

$$\begin{split} c^*(\mathcal{U}) &= \arg \min_{\{c(u_1), c(u_2), \cdots, c(u_{|\mathcal{U}|})\}} \sum_{(u,v) \in \mathcal{S}} p\left(c(u), c(v)\right) + \sum_{u \in \mathcal{U}} c(u), \\ s.t., & \ p(c(u), c(v)) \geq c(v) - c(u) + 1, \forall (u,v) \in \mathcal{S}, \\ & \ p(c(u), c(v)) \geq 0, \forall (u,v) \in \mathcal{S}, \\ & \ c(u) \leq c(v), \forall u, v \in \mathcal{U}, \text{ if } |\Gamma(u)| \geq |\Gamma(v)|, \\ & \ \sum_{u \in \mathcal{U}} c(u) \geq \alpha \cdot |\mathcal{U}|, \\ & \ c(u) = 1, \text{ if } u \text{ is the CEO}, \\ & \ c(u) > 1, c(u) \in \mathbb{Z}^+, \forall u \in \mathcal{U} \setminus \{\text{CEO}\}, \\ & \ p\left(c(u), c(v)\right) \in \mathbb{Z}, \forall (u,v) \in \mathcal{S}. \end{split}$$

SUPERVISION LINK INFERENCE WITH SOCIAL META PATHS AGGREGATION

Social Meta Paths in Enterprise Social Networks

- Follow: User follow or Φ 1(U, U).
 Ver, whose notation is "U → U"
- Follower of Follower: User \xrightarrow{follow} User \xrightarrow{follow} User, whose notation is " $U \to U \to U$ " or $\Phi_2(U, U)$.
- Common Followee: User \xrightarrow{follow} User $\xrightarrow{follow^{-1}}$ User, whose notation is " $U \to U \leftarrow U$ " or $\Phi_3(U, U)$.
- Common Follower: User follow⁻¹ User follow User, whose notation is "U ← U → U" or Φ₄(U, U).
- Common Group Membership: User \xrightarrow{join} Group $\xrightarrow{join^{-1}}$ User, whose notation is " $U \to G \leftarrow U$ " or $\Phi_5(U, U)$.
- Reply Post: User \xrightarrow{write} Post \xrightarrow{reply} Post $\xrightarrow{write^{-1}}$ User, whose notation is " $U \to P \to P \leftarrow U$ " or $\Phi_6(U, U)$.
- Like Post: User \xrightarrow{write} Post $\xrightarrow{like^{-1}}$ User, whose notation is " $U \to P \to P \leftarrow U$ " or $\Phi_7(U, U)$.

SUPERVISION LINK INFERENCE

- DP-intimacy(Directed Path-Intimacy)
- \circ i={1,2,3,4,5,6,7}

DP-intimacy_i
$$(u, v) = \frac{|\mathcal{PATH}_i(u \leadsto v)| + |\mathcal{PATH}_i(v \leadsto u)|}{|\mathcal{PATH}_i(u \leadsto \cdot)| + |\mathcal{PATH}_i(v \leadsto \cdot)|},$$

where $PATH_i(u \leadsto v)$ denotes the instance set of meta path $\Phi_i(U, U)$ going from u to v in the ESN.

$$intimacy(u, v) = \frac{e^{\sum_{(i)} \omega_i \text{DP-intimacy}_i(u, v)}}{1 + e^{\sum_{(i)} \omega_i \text{DP-intimacy}_i(u, v)}} \in [0, 1],$$

where the value of ω_i denotes the weight of social meta path Φ_i and $\sum_i \omega_i = 1$.

REGULATED SOCIAL CLASS MATCHING

Figure 4: An example of K-to-one matching.

OUTLINE

- Introduction
- Problem Proposed
- Method
- Experiment
- Conclusion

EXPERIMENT DATASET

100k employees

SOCIAL STRATIFICATION RESULTS

○ 先來實驗出哪個 때 最佳

Figure 5: Sensitivity analysis of parameter α .

$$\alpha_{.} = 5.5$$

SOCIAL STRATIFICATION RESULTS

Figure 6: Precision and Recall achieved by Create and ASD at each social class of the organizational chart.

Figure 7: Performance comparison of Create and ASD evaluated by different metrics.

MANAGEMENT THRESHOLD SENSITIVITY

ANALYSIS

• 決定K的值

Figure 9: Sensitivity analysis of parameter K.

K-to-one matching ORGANIZATIONAL CHART INFERENCE RESULTS

Table 1: Performance comparison of different organizational chart inference methods.

Method	Metrics	
	AUC	Precision@100
Create(K = 10)	0.856	0.830
CREATE(K = 15)	0.869	0.870
Create $(K = 20)$	0.869	0.870
Create-sl	0.719	0.820
Create- $sm(K = 10)$	0.610	0.720
Create-sm($K = 15$)	0.630	0.790
Create-sm($K = 20$)	0.630	0.790
Create-s	0.627	0.740
S-CN	0.636	0.440
S-JC	0.636	0.260
S-AA	0.528	0.070

matching

ORGANIZATIONAL CHART INFERENCE RESULTS

Figure 8: Performance comparison of Create and Create-sm evaluated by different metrics (K = 15).

K-to-one matching

OUTLINE

- Introduction
- Problem Proposed
- Method
- Experiment
- Conclusion

CONCLUSION

- 1. We have studied the organizational chart inference (IOC) problem based on the heterogeneous online ESNs.
- 2. A new chart inference framework Create has been proposed.

THANKS FOR LISTENING