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Introduction

Motivation

1. how to inferrealtimeair quality of any arbitrary location given
environmentaldata anddata fromvery sparsamonitoring
locations

2. 1f one needdgo establish few new monitor statioris improve the
Inference qualityhow to determine the best locations for such
purpose”?



Introduction

Goal

AGiven a set of existing aimonitoring stations where to establish the
next one®

Atry to create anAQI inference mechanisthat not only can infer the
AQI valuesf any arbitrary unobserved location but also reveal the

confidence ofts inference

Awe propose tcestablish newvstations at the locations that can
minimize theuncertaintyof the inference model
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Figure 2. The proposed framework.
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Method

Data and Features

Air QualityRecords
MeteorologicalData
PointOf-Interests (POl)s
Road Networks

oo o p

Table 1. Statistics of the Beijing data.

Data Sources Statistics
POI 2012 Q3 272,109
# of road segments 162,246
S Highways length 1.497km
Road Network Roads 18,525km
# of intersections 49,981
# of stations 22
# of hours 10416%22
AQI
? Time spans 8/24/2012 -
10/31/2013
Urban Size (grids) 1km (2500)
Meteorological Data | # of hours 10416*2500

Table 2. The list of types of POIs in this paper.

T1: Vehicle Services (gas stations, repair)

T7: Sports

T2: Transportation spots

T8: Parks

T3: Factories

T9: Culture and education

T4: Decoration and furniture markets

T10: Entertainment

T5: Food and beverage

T11: Companies

T6: Shopping malls and supermarkets

T12: Hotels and real estates




Method

INFERRING ARBITRARYWAQUES

1. Constructed tanodelthe spatialtemporal correlatiorbetweengrids

2. trytolearn the weights of the edgeassuming theyepresent the
correlations between nodes based on thfaatures

3. emphasize®n inferring the AQI valudser eachlocation, which
presumes those gridshose features arelose toeach other tend to
share similar AQlalues

4. Thefeatureweights are adjusted to minimize the uncertaintytiog
modelon inferring the unobserved locations



The construction of aAGconsists of four parts:

1. Connecting to Station Locatior]
2. Connecting to Neaby Locations

3. Connecting to Recelhiayers
connect every unobserved node

to all the observed nodedn thesame | 4. Connecting to Similar Layers
time stamp -
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Method

affinity-based AQI inferend@dQIn) model
Aa graphbasedsemisupervised learningolution

3.

The observed AQI on labeled nodes-W<are utilizedo infer the AQI
distributions P(upf unlabelednodes u<-U

we assume that nodes with similar features should have similar AQI
distributions. This relationshiis modeled by edge weights through the
combined affinityfunction

we propose taune the parameterdo minimize the model uncertainty
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Method
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Method
A Combined Affinity Function

a(u,v) = exp (— Z e X AFf, (Afx (u, v))) (1)

k=1

A KL . measurethe differencebetween twoAQIdistributions

0P =) wiw PR -PEP? @
u,v G


https://zh.wikipedia.org/wiki/%E7%9B%B8%E5%AF%B9%E7%86%B5

Method

BUILDINMEASUREMENSITATIONS
AGreedybased EntropWinimizationGEMN)

amethod calledgreedybased entropy minimization (GEMhat
aims atranking location®ased on their capability toeduce
uncertainty
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Experiments

The Effectiveness of AQInf

A Beijing area 50*50 grids
A 22 of the grids have the monitoringtations

A periodspansfrom 8/24/2012 to 10/31/2013
containingl10416 time stamps



Experiments

AToevaluatethe usefulness ahe proposedfeatures

1. Geographical distancdsatures plus three recent and three
similartime layers as featuresiénoted by D+T1)3

2. features in (1) plughe meteorologydata @denoted by D+T3+M

3. features in (2plusRoadnetand POI featuresiénoted by ALL
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Experiments
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Experiments

The Effectiveness of GEM
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Figure 8. The TRR results for PMio and PM25 with varying
number of recommended locations.
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Figure 9. The improved RMSE results for PMio and PMa2.s with
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Figure 10. The average entropy for PMio and PM2s with vary-
ing number of recommended locations.



Experiments

Evaluating GEM with different time spans
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Figure 11. The RMSE of recommending 5 locations for PMio
and PM s with varying number of labeled locations.
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Figure 12. The TRR results for PM;p and PM; s when varying
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Conclusion

AThis paper proposes a modelrecommend the most
properlocations inwhich building new air quality monitoring
stationscanlead tothe largest accuracy improvement on air
qgualityinference

Aln the future,we willfocus onimproving the efficiencyf
this model througlparallelization

Awe will seek formore applications obur mode| in particular
In the area of traffic monitoring ansurveillance irurban
areas
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P(u) — P(v) = D, (P(W)||P(v)) + D, (P(W)[|P(w)) (3)

P = argminppy Q(P) (4)

P(u)lx] =

Z wyp PWx], x=0,12, .., ¢max (5)
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