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ABSTRACT
Despite the success of large knowledge bases, one kind of knowl-
edge that has not received attention so far is that of human activi-
ties. An example of such an activity is proposing to someone (to get
married). For the computer, knowing that this involves two adults,
often but not necessarily a woman and a man, that it often takes
place in some romantic location, that it typically involves flowers
or jewelry, and that it is usually followed by kissing, is a valuable
asset for tasks like natural language dialog, scene understanding, or
video search.

This corresponds to the challenging task of acquiring semantic
frames that capture human activities, their participating agents, and
their typical spatio-temporal contexts. This paper presents a novel
approach that taps into movie scripts and other narrative texts. We
develop a pipeline for semantic parsing and knowledge distillation,
to systematically compile semantically refined activity frames.

The resulting knowledge base contains hundreds of thousands of
activity frames, mined from about two million scenes of movies,
TV series, and novels. A manual assessment study, with extensive
sampling and statistical significance tests, shows that the frames
and their attribute values have an accuracy of at least 80 percent.
We also demonstrate the usefulness of activity knowledge by the
extrinsic use case of movie scene search.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Text Analysis

Keywords
Activity Knowledge; Commonsense Knowledge Acquisition

1. INTRODUCTION
Motivation and Problem. Knowledge graphs like DBpedia, Free-
base, or Yago [2, 5, 40] have become major assets for enrich-
ing the Web towards more semantic search and recommendations.
They are heavily used at large companies such as Baidu, Facebook,
Google, Microsoft, and others. The emphasis in these settings is on
individual entities like people, organizations, and products or cre-
ative works, with focus on factual knowledge about such entities
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(e.g., songs and awards of an artist, CEOs and products of compa-
nies, cities and restaurants visited by friends, etc.).

Recently, however, with ground-breaking new products like
Amazon Echo as well as assistants like Google Now, Microsoft’s
Cortana, and Apple’s Siri, there is a strong need for commonsense
knowledge enabling smart interpretation of queries relating to
everyday human activities.

Unfortunately, fact-oriented knowledge graphs do not provide
detailed knowledge of human activities. The same holds for more
commonsense-oriented knowledge bases, from the seminal projects
Cyc [22] and WordNet [15] to more recent endeavors such as Con-
ceptNet [17], WebChild [41], and NEIL [9]. While these contain
millions of assertions between general concepts, referring to pred-
icates like isPartOf (e.g., engine isPartOf car), usedFor (e.g., car
usedFor transportation, hasTaste (e.g., chocolate hasTaste sweet),
hasShape (e.g., apple hasShape round), occursInScene (e.g., car
occursInScene streetTraffic), and more, they do not deliver fine-
grained information about large numbers of specific activities.

In this paper, we fill this void by automatically compiling large
amounts of knowledge about human activities from narrative text.
For example, climbing a mountain should be a known activity,
along with attributes like participating agents — a human, espe-
cially a climber, typical location, and time of day. This knowledge
should be organized in a frame-style representation, as illustrated in
Figure 1. Further, the activities must be semantically grouped (here
with hiking up a hill), and these semantic groups must be hierar-
chically arranged. These activity groups should also be temporally
linked to typical previous and next activities. Having this sort of
data can greatly improve computer behavior in tasks like natural
language dialog, scene understanding, or video search.

While parts of our approach could be applied to other genres,
we focus on narrative text because it possesses some attractive yet
under-utilized properties. Rather than being limited to newsworthy
events, narrative text may include descriptions of common, rather
mundane everyday activities. These are often described in a very
detailed way and in chronological order with marked boundaries.
For instance, we may find that one often unlocks a door before
entering a building. Finally, we wish to connect our knowledge to
visual content in movies, which enables several new applications,
including the ones we consider later in Section 7.

Recent work in computer vision [34] has manually compiled a
small collection of activity scripts, based on short videos about
cooking. This contains about 65 different activities such as melt-
ing butter or cooking pasta, with attributes tool=pan or tool=sieve.
Our goal is to broaden and automate the construction of these kinds
of semantic frames, in order to populate a comprehensive activity
knowledge base, in which, all concepts are sense-disambiguated
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Figure 2: Knowlywood System Overview

Figure 1: Activity Frame Example

and thus canonicalized with regard to high-quality linguistic re-
sources like WordNet or VerbNet [36, 18].

Approach and Contribution. We have developed an advanced
pipeline for semantic parsing and knowledge distillation, which
allows us to systematically compile semantically refined activity
frames from scripts and novels. We have processed nearly 2 mil-
lion scenes from 560 movies, 460 TV series, and 100 books, and
constructed a high-quality activity knowledge base with almost
one million frames. Specifically, we represent activities as JSON
objects which gives us typed attributes (also known as slots in
knowledge representation terminology) and set-valued entries for
attributes (also known as values or fillers). JSON is a popular
format for data export/import. Our frames can also be easily cast
into RDF triples. Overall, our contributions are:
• The first system, called Knowlywood, that automatically ac-

quires detailed knowledge about activities, by tapping into
movie/TV scripts and narrative texts and combining semantic
parsing techniques for candidate generation with probabilistic
inference and graph algorithms for candidate cleaning.
• New techniques for sense disambiguation of multi-word

phrases (mapping them to WordNet) and taxonomy induction
for activities, as building blocks of our construction pipeline.
• A large knowledge collection with nearly one million activities

in the form of semantic frames, and with linkage to visual con-
tents where activities occur. This Knowlywood collection will
be made publicly accessible.1 Its high quality has been con-
firmed by manual assessment with extensive sampling.

Our activity frames are valuable for use-cases such as video search,
provide background knowledge for human-computer dialog, and
can aid tasks like video scene understanding and the generation
of textual descriptions for visual contents. Note also that the de-

1http://tinyurl.com/knowlywood

veloped methodology is general and can be applied to other input
sources if available, for example, personal diaries or travel logs.

2. SYSTEM OVERVIEW
Figure 2 illustrates the Knowlywood pipeline of methods and tools.
For automatically building the Knowlywood KB, we take the fol-
lowing main steps:
• Semantic Parsing: We first apply information extraction tech-

niques on our input sources and then feed the output into a novel
technique for semantic parsing, based on identifying clauses,
mapping words and phrases to WordNet and VerbNet, and us-
ing integer linear programming (ILP) for the final disambigua-
tion and construction of candidate activity frames.
• Graph Inference: We use the output data of the first stage to

construct a preliminary activity knowledge graph, with noise
and false positives. We then use Probabilistic Soft Logic (PSL)
for efficient inference to construct a cleaner graph as consistent,
high-quality output.
• Taxonomy Construction: We merge activities into equiva-

lence classes, so-called synsets in the terminology of lexical
resources (e.g., WordNet). An example is merging activity pro-
pose to girlfriend with propose to fiancee. Finally, we construct
a subsumption hierarchy of activity synsets, which connects ac-
tivities by the hasType relation. An example is: propose to girl-
friend hasType propose to someone.

We additionally attach video frames to activities. To align scenes in
movie scripts with their respective video frames, we exploit times-
tamp information in subtitle data.

Computational Model. The input to our methods is primarily
scripts about movies or episodes of TV series. Figure 3 shows an
example from the movie “Sex and the City” (obtained from the
website imsdb.com). Although this is in a free format, there is
some structure that we can exploit. Specifically, there are cues for
detecting scene boundaries, we can identify speakers, and we can
extract short descriptions about the setting of a scene that typically
precede the actual dialog. Also, there are short narrative texts in
between dialogs. Our methods are primarily geared for narrative
snippets such as “Big proposes to Carrie” or “Big and Carrie kiss”.
Section 3 discusses how to further process these snippets and ex-
tract semantically cleaner information.

Obviously, individual scripts may be too noisy for automated
methods to extract any meaningful information. Our method lever-
ages that certain cues for activities appear in several scenes of dif-
ferent movies. Further, our scope is beyond movie scripts, includ-
ing sitcoms, TV series, and novels, providing us with a broad spec-
trum of activities and higher redundancy.

We treat verbal phrases in narrative snippets as surface expres-
sions for activity candidates. Using NLP techniques , this gives us
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cues such as “propose to a woman” and “kiss someone”. Generally,
we extract verb-object pairs, where the verb can have a preposition
(e.g., “propose to”) and the object is a noun phrase, potentially a
multi-word phrase. Initially, these are still ambiguous words that
may have many different meanings. Our methods map both verb
and object to unambiguous senses, so-called synsets in the Word-
Net lexical thesaurus [15]. This is crucial for semantic interpre-
tation, and also key to being able to combine cues from different
scenes and to organize activities in a clean taxonomy. In the ex-
ample, we would obtain propose#5 woman#1 where #5 and #1 are
the WordNet sense numbers of the ambiguous words “propose” and
“woman”. The result of this sense disambiguation forms the core
of an activity frame.

Definition 1. An activity is a pair (v, o) where v is a WordNet
synset for a verb or verb phrase and o is a WordNet synset for a
noun or noun phrase.

Activities are then enriched by attributes (or frame slots) about
location, time, and involved participants. The latter includes both
the humans in an activity (e.g., man, woman, judge) and objects
or props that play role in the activity (e.g., diamond or ring). We
obtain cues for the location and time attribute values using NLP
techniques as well as from the scene description (before the dialog
starts), e.g., “apartment”, “courthouse”, “spring”, “day”. For the
participants attributes, we extract cues from both the characters in
a scene and noun phrases in narrative snippets or dialogs. All these
will also be sense-disambiguated in the output for the KB.

Definition 2. An activity frame is an activity enhanced with at-
tribute values for location, time, and participants.

• For location, the allowed values are WordNet senses that are
hyponyms (specialization) of the WordNet sense location#1.

• For time, the allowed values are hyponyms of the sense time
period#1 or event#1.

• For participants, the allowed values are hyponyms of living
thing#1 or physical object#1.

Each attribute can have zero, one or multiple values.

Finally, as we may extract activity candidates from each scene,
we can relate activities from successive scenes (if there is a typical
pattern found in several movies). To this end, we introduce frame
attributes prev for a previous activity and next for a following ac-
tivity. This way we link different activity frames to form entire
chains. In the example, propose#5 woman#1 would be next-linked
to kiss#1 someone#1.

Definition 3. An activity chain is a sequence of temporally related
activities connected by prev and next links. A.next = B and B.prev
= A denote that activity A is often followed by activity B.

3. SEMANTIC PARSING
We have devised a customized pipeline for semantic parsing that

starts with the input scripts and extracts and disambiguates con-
stituents, all the way to constructing a frame structure for candidate
activities.

Consider the input sentence He shot a video in the moving bus.
The output frame for this input is shown in the last column of Table
1. The activity name is given by the verb followed by an object (i.e.,
shoot#4;video#1). Note that the words in this frame are mapped to
disambiguated WordNet senses [15], denoted by the numbers after
the # symbols. If a phrase is absent in WordNet, e.g. moving bus,
then we merely map its head word (bus). The other columns in

235 INT. PENTHOUSE APARTMENT – LATER – SPRING
Carrie and Big are on the carpeted floor.
Big proposes to Carrie.

BIG (CONT’D)
Carrie Bradshaw
love of my life -

will you marry me?

She nods. Speechless. Overcome. He smiles.

BIG (CONT’D)
See, this is why

there’s a diamond.

236 INT. COURTHOUSE/ROOM – DAY – SPRING

Carrie stands with Big in front of a JUDGE.
JUDGE

By the power vested in me, by
the state of New York, I now

pronounce you husband and wife.
You may now kiss the bride

Big and Carrie kiss.

Figure 3: Excerpt from Movie Script

Table 1: Semantic parsing example
Phrase WordNet VerbNet Output Frame

Mapping Mapping

the man man#1 Agent . animate Agent: man#1
began to shoot shoot#4 shoot#vn#3 Action: shoot#4
a video video#1 Patient . solid Patient:video#1
in in PP . in
the moving bus bus#1 NP . Location . solid Location:

moving bus#1

Table 1 show the input phrases (after chunking) and their mappings
to WordNet senses and entries in VerbNet [18], as discussed below.

Sentence Analysis. We first use ClausIE [11] to decompose sen-
tences into shorter clauses, whenever possible. These are then fur-
ther decomposed by applying the OpenNLP (opennlp.sourceforge.net)
maximum entropy model for chunking the text of each individual
clause. In the example in Table 1, this results in the sentence being
split as shown in the first column.

Sense and Argument Analysis. Understanding the verb is the
most critical task for semantic interpretation. We address this by
mapping the verb or verb phrase to its proper sense in WordNet
[15], which in turn is linked with VerbNet [18], a manually curated
linguistic resource for English verbs. For each verb class, Verb-
Net lists relevant thematic roles, semantic restrictions on the argu-
ments, and syntactic frames. For example, for the main predicate
verb shoot in our example sentence, VerbNet lists multiple candi-
date senses, and for the first of these, shoot#vn#1, it provides,
among others, the following syntactic frame:

Agent.animate V Patient.animate PP Instrument.solid
This would match He shot the man with a gun. Here, several roles
are accompanied by a semantic constraint, known as a selectional
restriction. A selectional restriction such as animate for the pa-
tient requires that this patient be a living being when used in the
given syntactic frame. This can guide the choice of the proper
WordNet mappings for the objects and for other words. For in-
stance, the man in our example sentence could be disambiguated
as man#1, which in turn is in a hasInheritedHypernym relationship
with living_thing#1, which leads us to the animate label from
VerbNet, and helps us find the right VerbNet sense for the verb.
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These dependencies are captured as constraints in our joint dis-
ambiguation method, based on Integer Linear Programming (ILP)
— discussed below. The ILP method uses prior weights obtained
from simpler heuristics for word sense disambiguation (WSD) —
discussed next.

WSD Priors. For an initial disambiguation of individual words and
phrases, we use the state-of-the-art WSD system It-Makes-Sense
(IMS) [43], which relies on supervised learning. We obtain the
following scores for mapping a word i to sense j:

τij =

score of IMS for j ∈ SW∑
j′
τij′ for j ∈ SV linked to j′ ∈ SW

Here, SW denotes the set of candidate WordNet senses for the verbs
and SV denotes the set of candidate VerbNet senses. Note that
VerbNet is much smaller and thus coarser-grained than WordNet,
hence the summation over all WordNet senses linked with the same
VerbNet verb.

An additional feature used in the ILP later are the most-frequent-
sense ranks that WordNet provides, based on manual annotation of
a large news corpus:

θij =

1/rank(j for i) for j ∈ SW∑
j′
θij′ for j ∈ SV linked to j′ ∈ SW

Finally, we compute syntactic and semantic priors based on how
well the input verb matches a VerbNet entry:

synij frame match score for word i and VerbNet sense j

semij selectional restriction score of the roles
in a VerbNet frame j for word i

ILP Model. For the joint disambiguation of all words in the input
sentence, we have devised an ILP with binary decision variables
xij set to 1 if word i is mapped to sense j (in WordNet and/or
VerbNet). V denotes the set of all input words or phrases i that are
verb chunks. Our ILP is defined as follows:

maximize∑
i,j

xij(ατij + β1θij + β2synij + β3semij)

subject to∑
j∈SV

xij ≤ 1 ∀i ∈ V

xij ≤ xij′ ∀i ∈ V, j ∈ SW,
j mapped to j′ ∈ SV

xi0j0 ≤ xij ∀i0 ∈ V, j ∈ SV,
xij ∈ role-restr(xi0j0)∑

j

xij ≤ 1 ∀i 6∈ V

xij ∈ {0, 1}

The objective function combines the various prior scores, with
coefficients tuned on withheld training sentences that are manu-
ally labeled. The first constraint ensures that at most one VerbNet
sense is chosen for each verb. The second one ensures consistency
between choices of WordNet senses and corresponding VerbNet
ones. The third constraint covers the selectional restrictions de-
scribed earlier. The fourth constraint ensures that at most one sense
is chosen for each non-verb word. We instantiate a separate ILP
for every sentence, and thus the ILP size and complexity remain
tractable.

4. GRAPH INFERENCE
Based on the output frames of the semantic parsing phase, we

derive connections between different activity frames: parent types
(hypernyms), semantic similarity edges, and temporal order (previ-
ous/next). We cast this as a graph inference problem, denoting the
three types of connections as T , S, and P (previous) edges. We
tackle this task using the Probabilistic Soft Logic (PSL) framework
[6] for relational learning and inference.

For each frame, the activity name is either a single word that is
directly mapped to a WordNet/VerbNet sense, or it is a multi-word
phrase. In the latter case, we only map the head word of the phrase
to WordNet or VerbNet. For an activity a, we denote the mapped
part as h(a) and the remaining part as h̄(a) (h̄(a) = ∅ for single-
word activity names).

Edge Priors. We define an activity as a (verb-sense,noun-sense)
pair. This allows us to leverage WordNet’s taxonomic hierarchy to
estimate parent types and similarities between activities.

Our model starts off with prior probabilities for each of the
three kinds of edges. The prior for T (parent type) edges between
two pairs (v1, n1), (v2, n2) is calculated as a multiplicative score
t(v1, v2) · t(n1, n2). For the noun senses, we use the WordNet
hypernymy: The score is 1 if parent and child are connected by
hypernymy, and 0 otherwise. For the verb senses, we check both
WordNet hypernymy and VerbNet verb hierarchy.

Finally, we derive edges from the subsumption of activity par-
ticipants, retrieved from WordNet, e.g. between drinking tea and
drinking beverage.

We create S (similarTo) edges based on the similarity between
(v1, n1), (v2, n2) using the multiplicative score: sim(v1, v2) ·
sim(n1, n2). The taxonomic relatedness score between two noun
senses n1, n2 is computed using a WordNet path similarity mea-
sure [30]. Scores between two verb senses v1, v2 are computed
using WordNet verb groups and VerbNet class membership [36].
P (previous) edges: Scripts come with scene boundaries. We

assume that the activity sequences that occur in a scene are tempo-
rally alignable. While an exact sequence of activity does not bring
much redundancy, a gap-enabled sequence of activities can have
rich statistics. Secondly, generalizing activities to potential par-
ent nodes brings more redundancy, and hence richer statistics. We
use a generalized sequence mining algorithm, GSP [38], perfectly
suitable to our scenario. We define two parameters: minimum sup-
port=3 and maximum gap = 4. We use GSP to efficiently determine
P edges. We provide priors to P edges according to the following.
An activity a1 precedes a2 with probability proportional to the sup-
port freq(a1 prev a2)

freq(a1) freq(a2)
.

Inference. Based on the initial prior scores for T , S, P , our task
is to compute a cleaner graph of T , S, and P edges with scores re-
flecting their joint dependencies. These dependencies are captured
in our PSL model with the following soft first-order logic rules.
Since these are soft rules, they do not need to hold universally. The
model automatically determines to what extent they should con-
tribute to the final solution.

1. Parents often inherit prev. (P ) edges from their children:
P (a, b) ∧ T (a, a′) ∧ T (b, b′)⇒ P (a′, b′).

2. Similar activities are likely to share parent types
S(a, b) ∧ T (b, b0)⇒ T (a, b0).

3. Likely mutual exclusion between edge types:
T (a, b) ∧ S(a, b)⇒ ¬P (a, b).

4. Siblings are likely to be similar:
T (a, c) ∧ T (b, c)⇒ S(a, b).
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5. Similarity is often transitive:
S(a, b) ∧ S(b, c)⇒ S(a, c).

6. Similarity is normally symmetric:
S(a, b)⇒ S(b, a).

The inference weights wi are tuned based on withheld data, using
the PSL system’s weight learning module.

5. TAXONOMY CONSTRUCTION
Activity Merging. The previous steps of our pipeline yield fairly
clean activity frames, but may produce overly specific activities
such as “embrace spouse”, “hug wife”, “hug partner”, “caress
someone”, etc. These are sufficiently similar to be grouped to-
gether into a single frame (with slightly generalized semantics).
Thus, the relation S from the previous step provides a pruned
starting point for activity merging.

Definition 4. An activity synset is a group of activities with
highly related semantics. For a synset {(v1, o1), (v2, o2), . . . } of
verb-sense/object-sense pairs, we require that ai = (vi, oi) and
aj = (vj , oj) have a semantic distance in WordNet below a certain
threshold.

Specifically, we consider WordNet path similarity [30] as a mea-
sure of semantic distance. To this end, we construct a graph be-
tween activity frames based on the synset (i.e., equivalence) and
hypernym/hyponym relations in WordNet. The edges in this graph
could be weighted by relatedness strength, such as gloss overlap
[3], but we simply used uniform weights,i.e. simple path lengths
dist(vi, vj). For two activities ai, aj , we compute

1

2

(
1

1 + dist(vi, vj)
+

1

1 + dist(oi, oj)

)
.

In addition, we consider the participants sets Pi, Pj in the frames
of ai,aj , respectively. Recall that each Pi is a set of WordNet noun-
phrase senses. We compute the WordNet path similarity for each
element in Pi × Pj , and aggregate them into an overall measure
by taking the maximum (or alternatively the average). The final
distance between ai and aj is the average of the verb-sense/object-
sense distance and the participants distance.

The threshold for merging two activities into a synset is deter-
mined by manually grouping a small sample of activities and com-
puting the threshold that achieves the synsets in the sample. We
transitively merge activities whenever their distance is below that
tuned threshold. We perform a transitive closure on this pruned
neighborhood to allow grouping of activities.

Hierarchy Induction. The above techniques provide us with a
suitably grained but still flat collection of activity synsets. How-
ever, some of these may semantically subsume others. For ex-
ample, divorce husband is subsumed by break up with a partner.
Again, the relation T from the previous step provides a pruned
starting point for hierarchy induction.

Definition 5. An activity taxonomy is a DAG (directed acyclic
graph) of activity synsets such that ai < aj is an edge in the DAG
if ai is semantically subsumbed by aj . That is, the verb or object
of aj is more general than that of ai.

To construct the hierarchy, we again use WordNet path similar-
ity but consider only hypernym relations now (i.e., disregard hy-
ponyms). For this asymmetric measure, we again tune a threshold
by manually assessing a small sample. The resulting taxonomy
graph initially contains all subsumption pairs with semantic dis-
tance below the threshold. As this may create cycles, we finally

break cycles by greedily removing low-weight edges. In building
the Knowlywood KB, we had to eliminate only few cycles.

6. RESULTS
To evaluate our approach, we conducted a series of experi-

ments to thoroughly examine our pipeline for semantic parsing
and knowledge distillation, as well as the resultant Knowlywood
activity frames.

Data Processing. Knowlywood is constructed by processing 1.89
million scenes from several sources:
• 560 movie scripts, scripts of 290 TV series, and scripts of 179

sitcoms. We crawled this data from Web sites like wikia.com
and dailyscript.com.
• The Novels dataset comprises 103 novels from Project Guten-

berg [14].
• Crowdsourcing: We use the data from [34], which consists of

textual descriptions of videos portraying humans engaging in
cooking related activities.

6.1 System Components
Semantic Parsing. In order to gain deep insights about our sys-
tem, we had human judges annotate at least 250 random samples of
the outputs of the different stages in our semantic parsing method,
i.e., sentence extraction by pre-processing datasets, clause level
splitting, the basic NLP pipeline (tagging, chunking, etc.), and fi-
nally disambiguation and VerbNet-based role assignment. Table 2
presents the resulting precision scores with statistical significance
given as Wilson score intervals for α = 95% [7].

We observe that most of the errors stem from the NLP pipeline,
especially chunking. This could be addressed by using more ad-
vanced NLP tools, which, however, tend to be slower. Processing
the sitcom and TV series data is the most challenging and error-
prone due to the nature of these texts: the sentences are long and
often filled with slang (e.g., "hold’em"). Some errors are also intro-
duced at the early stage of pre-processing movie scripts, where we
rely on regular expressions to parse the semi-structured text files
(e.g., the introductory text for each scene which introduces the lo-
cation, time, etc.).

Graph Inference. Next, we evaluate the PSL-based graph infer-
ence. Our findings indicate that it was instrumental in cleaning
the candidate relations between activities and also in acquiring new
edges between them. Table 3 shows the precision and size of the
graph before and after the inference step. For example, from the
P edge between acquire#1; cutting knife#1 and use#1;

cutting knife#1, a new P edge is derived from acquire#1;

knife#1 to use#1; knife#1. The transitive closure on the S re-
lationships adds new edges. Thus, our graph inference increases
Knowlywood’s coverage and accuracy by inferring missing edges
and removing inconsistent ones.

Table 3: Effect of PSL inference
Before inference After inference

Precision #Edges Precision #Edges

T 0.77±0.04 1,906,520 0.87±0.03 4,511,203
S 0.84±0.02 1,022,700 0.85±0.04 3,421,210
P 0.78±0.04 116,186 0.84±0.09 205,678
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Table 2: Evaluation of the semantic parsing
sentence clause NLP senses participant roles overall

Movie scripts 0.79 ±0.11 0.84 ±0.07 0.87 ±0.06 0.96 ±0.04 0.96 ±0.03 0.91 ±0.03
TV series 0.90 ±0.06 0.96 ±0.04 0.40 ±0.10 0.65 ±0.10 0.79 ±0.08 0.74 ±0.04
Sitcoms 0.91 ±0.07 0.93 ±0.06 0.38 ±0.12 0.67 ±0.12 0.72 ±0.11 0.73 ±0.05
Novels 0.94 ±0.05 0.91 ±0.07 0.74 ±0.12 0.85 ±0.09 0.93 ±0.06 0.90 ±0.04
Crowdsourcing 0.96 ±0.04 0.96 ±0.04 0.86 ±0.09 0.75 ±0.11 0.91 ±0.07 0.91 ±0.03

Synset and Hierarchy Construction. We performed a static anal-
ysis of the hierarchy as well as an empirical evaluation. There were
543 cycles in the graph. These were of a very small length (average
length 3). After breaking the cycles, the DAG consists of 505,788
synset nodes without any cycles. The maximum depth of the graph
is 5.

Over a random sample of 119 activity synsets, human judges
were asked if the edge between random synset members was indeed
a synonymy relation, i.e. semantically equivalent activities. To
evaluate the hierarchy, in a similar way, human judges were asked
if the edge between two activity synsets was one of hypernymy, i.e.
subsuming activity synsets.

The synset grouping achieved a very high accuracy of 0.976±0.02
(Wilson score intervals for α = 95% [7]). One of the reasons for
this high accuracy was the tight threshold for taxonomic similar-
ities. We had empirically chosen a high threshold of 0.40 for the
synset similarity.

The hierarchy grouping achieved a high accuracy of 0.911±0.04
(Wilson score intervals for α = 95%). An example error case was
walk with a fly having a hypernymy link to travel with a beast.
This is because animal and beast are synonymous. Such mildly
incorrect cases led to a slightly lower precision.

6.2 Knowlywood KB Evaluation
In total, the Knowlywood pipeline produced 964,758 unique ac-

tivity instances, grouped into 505,788 activity synsets. In addition
to the edges mentioned above, we also obtain 581,438 location,
71,346 time, and 5,196,156 participant attribute entries over
all activities.

Quality. To evaluate the quality of these activity frames, we com-
piled a random sample of 119 activities from the KB, each as a
full frame with values for all attributes (participants, location, time,
previous and next activity, etc.). We relied on expert human anno-
tators to judge each attribute for each of these activities. An entry
was marked as correct if it made sense to the annotator as typical
knowledge for the activity. The judgement were aggregated sep-
arately for each attribute, and we computed the precision as c

c+i
,

where c and i are the counts of correct and incorrect attribute val-
ues, respectively. For statistical significance, we again computed
Wilson score intervals for α = 95%. The per-attribute results are
reported in Table 4. The inter-annotator agreement for three judges
in terms of Fleiss’ κ is 0.77.

We can observe from these assessments that Knowlywood
achieves good precision on most of the attributes. In some datasets
like the Crowdsourcing collection, no information on time or
location is available. This accounts for the low scores.

Examples. Fig. 4 presents anecdotal examples of Knowlywood’s
activity frames, with specific sense numbers from WordNet.

Comparison with ConceptNet. There is no direct competitor that
provides frames of semantically refined activities. We thus com-
pared Knowlywood with ConceptNet 5 (CN), the closest available

Figure 4: Anecdotal Examples

resource, assuming that any concept name matching the pattern
verb [article] object is an activity. We mapped CN’s relations to
our notion of activity attributes as follows:
• IsA, InheritsFrom→ type,
• Causes, ReceivesAction, RelatedTo, CapableOf, UsedFor →

agent,
• HasPrerequisite, HasFirstSubevent, HasSubevent, HasLast-

Subevent, MotivatedByGoal→ prev/next,
• SimilarTo, Synonym→ similarTo,
• AtLocation, LocationOfAction, LocatedNear→ location.

The activities derived this way from CN were manually assessed
by the same pool of annotators that assessed the Knowlywood
frames. We randomly sample 100 activities from CN and take all
their relations but adding further relationships if we encountered
too few of any one relationship type. The last row of Table 4 shows
the results — both coverage and precision. We see that CN works
well for eliciting previous/next activities. Here its quality exceeds
that of Knowlywood. CN’s crowdsourcing-based knowledge ac-
quisition leads to fine-grained temporal knowledge that is rather
difficult to mine from narrative texts (e.g., that riding a horse is
preceded by keeping your heel down, and followed by your bottom
getting sore).
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Table 4: Knowlywood coverage and precision

Source #Input #Scenes #Unique Parent Participant Prev Next Loc. Time Avg.
Scripts Activities

Movie scripts 560 148,296 244,789 0.87 0.86 0.78 0.85 0.79 0.79 0.84
TV series 290 886,724 565,394 0.89 0.85 0.81 0.84 0.82 0.84 0.86
Sitcoms 179 286,266 200,550 0.88 0.85 0.81 0.87 0.81 0.83 0.87
Novels 103 383,795 137,365 0.84 0.84 0.78 0.88 0.85 0.72 0.84
Crowdsrc. 25 3,701 9,575 0.82 0.91 0.91 0.87 0.74 0.40 0.86

Knowlywood 1,157 1,708,782 964,758 0.87 0.86 0.84 0.85 0.78 0.84 0.85±0.01

ConceptNet 5 - - 4,757 0.15 0.81 0.92 0.91 0.33 N/A 0.46±0.02

However, these high precision values also result from the specific
nature of CN’s knowledge representation. Since CN’s concepts are
essentially strings (not word senses), we instructed our annotators
to evaluate an attribute value as correct even if it holds true for just
one possible interpretation of the concept names, ignoring ambigu-
ity. The data also contains duplicates (e.g. “you open your wallet”,
“open your wallet”, “open wallet”, . . . ) that were all judged as cor-
rect as predecessors of “taking out money”. CN’s less formalized
nature is particularly apparent from the fact that the parent type at-
tribute obtains a precision of only 15%. Generally, except for the
temporal ordering of activities, the precision of CN is substantially
below that of Knowlywood.

Most importantly, Knowlywood’s coverage of activities dwarfs
that of CN. CN merely provides 4,757 activities, most of which are
also included in Knowlywood, while the latter additionally contains
nearly a million activity frames.

Comparison with ReVerb. We also compare Knowlywood with
ReVerb [12], the most widely used system for broad-coverage open
information extraction. Open information extraction aims at min-
ing all possible subject-predicate-object triples from text. We mine
activity knowledge from these triples such that the subject is an
agent, and the predicate and object together form an activity, e.g.
drink + coffee.

For role assignment, we mine MovieClips.com to obtain
mappings from words to labels. MovieClips contains high-quality
human-annotated and categorized tags for nearly 30,000 movie
scenes (e.g. “action:singing”, “prop:violin”, “setting:theater”).
These tags have a direct correspondence to our attributes (see
Table 6). The tag co-occurrence statistics can be used to cre-
ate a Bayesian classifier as P (class|word) = P (class,word)∑

wi
P (class,wi)

, relying on the joint probabilities for classes and words from
MovieClips.com. One may also consider using semantic role
labeling systems as an alternative. However, they cannot solve
our semantic parsing task because they require large amounts of
domain-specific labeled training data. Moreover, they suffer from
poor scalability.

We consider two different datasets as input to ReVerb. First,
all the input Script data that we used for our system (setup called
ReVerbMCS). Second, all of ClueWeb09 dataset (setup called Re-
VerbClue). ReVerb extractions over ClueWeb09 are already avail-
able in the form of a publicly available dataset [12], consisting of 15
million unique SVO (Subject Verb Object) triples. The ReVerbClue
data does not contain enough context to use the MovieClips-based
role classifier because it consists of only SVO triples.

Since both ReVerbMCS and ReVerbClue extractions are strings
(not word senses), we leniently evaluated an attribute value as cor-
rect if it holds true for any possible sense of the concept. This is

Table 5: ReVerb baselines (counts and precision scores)
Activities Participant Location Time

ReVerbMCS 0.37M 0.37M, 0.77 0.17M, 0.83 0.05M, 0.66
ReVerbClue 0.86M 1.47M, 0.41 0.055M , - 0.008M, -

Table 6: Mappings between MovieClips.com and Knowlywood
MovieClips tag Knowlywood attributes Example

action activity.v cut
prop activity.o knife
setting location bar
occasion time thanksgiving
charactertype participant policeman

thus a much easier task than Knowlywood’s, for which we required
the correct sense disambiguation.

In Table 5, we list the number of activities as well as numbers
and precision of several roles. The precision values are obtained
by evaluating the frames corresponding to the activities overlap-
ping with the Knowlywood test set of 119 activities resulting in
more than 400 attribute triples. Knowlywood outperforms both the
ReVerb based baselines (compare to Table 4), in terms of both pre-
cision and counts. The role labels score in ReVerbMCS reflect the
rich statistics (though limited in size) obtained from the manually
curated MovieClips. We also see that extractions from ClueWeb09
data, which is an order of magnitude larger than our scripts data,
did not entail better quality.

Multimodal Content. By automatically aligning the movie scripts
with subtitled videos, we were also able to associate 27,473 video
frames with Knowlywood’s activities. We believe that this will be
an important asset for computer vision, because existing systems
for activity detection in videos suffer from a lack of training data
and background knowledge, and hence have been quite limited in
their coverage.

7. USE CASES

7.1 Movie Scene Tagging
In order to evaluate the usefulness of the Knowlywood KB ex-

trinsically, we introduce the task of predicting the activity portrayed
in a movie clip, without task-specific training data, given only the
location and participants in the corresponding scene.

As ground truth, we consider Movieclips.com, which con-
tains high quality, manually curated categorized tags for nearly
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30,000 movie clips/ scenes. Examples of these include: “loca-
tion/setting: cemetery”, “participating object/prop: rose”, “action:
obituary speech”. By analyzing the co-occurrence statistics over
the tags of these clips, we obtain a scored list of activities for
a given [participant(s), location(s), time(s)]. We randomly select
1,000 clips from this gold data.

The evaluation task is to assess Knowlywood’s (or any baseline
activity KB’s) top-k activity recommendations given only [partic-
ipant(s), location(s), time(s)]. This task is more complex than a
simple tag recommendation which would ignore any tag categories.
As KBs, we use the Knowlywood KB, and the various baselines:
ConceptNet, ReverbMCS, and ReverbClue.

Table 7: Movie Scene Tagging evaluation
MRR Hit rate

ReVerbClue 0.070 0.180
ConceptNet 0.143 0.345
ReVerbMCS 0.254 0.415
Knowlywood 0.327 0.610

The evaluation is based on a comparison of the predicted top-k
activity list with the ranked gold list of activities. We report the
standard IR-metric [21] Mean Reciprocal Rank (MRR) that re-
wards early hits in the predictions. We also report Hit-Rate metric
which is one whenever the top-10 results contain atleast one good
tag.

We then evaluated the various KBs on the movie scene tagging
task. This is an automated evaluation, as the ground truth gold data
is already available. For both the KBs and the gold-set, we uni-
formly set k=10, i.e. we compare the top-10 predictions against the
top-10 ground truth rankings. The results in Table 7 demonstrate
that although Knowlywood has not been trained or mined from
Movieclips.com tags at all, the system is able to outperform
the baselines by a large margin both on MRR and Hit rate. Reverb-
MCS outperforms other baselines because the role label classifer in
ReverbMCS uses Movieclips.com statistics already. Knowly-
wood also yields a much better coverage in terms of the hit rate.

7.2 Scene Search
For a second extrinsic evaluation, we use Knowlywood to build

a search platform over the corpus, which again comprises movie
scripts, the Crowdsourcing dataset, TV series, sitcoms, and novels.
This search system takes a text query q as input, which is expected
to correspond to some activity. Examples of such queries are ani-
mal attacks man, kissing during a romantic dinner. As output, we
expect a ranked list of scenes over the indexed corpus.

Approach. We use the textual (not visual) content of the scenes to
obtain the score of a scene s for a given query.

Given an activity a ∈ K, where K denotes the Knowlywood
knowledge base, let ap be the set of

participants according to K and Ap =
⋃

a∈K ap be the set of all
participants associated

with activities in K. We derived a query-likelihood statistical
language model as follows.

The probability that the scene s generates a query q is given by

P (q|st) =
∑
a∈K

∑
p∈Ap

P (q|a) · P (a|p) · P (p|st)

• st is the textual representation of the scene,
• P (p|st) is the probability that the scene generates participant p

of an activity (e.g., girl, ring, etc.), estimated from noun-phrase
occurrences in t with corpus smoothing,

Table 8: Query Frames.
Frame Semantic restriction

S WN physical entity
V WN verb (compulsory)
O1 WN physical entity
O2 WN physical entity
L WN location or WN physical entity
T WN time-period

Table 9: Performance of the two search methods.
Algorithm NDCG MAP Precision@5 MRR

Knowlywood 0.8972 0.9512 0.8809 0.9840
Text retrieval 0.0772 0.0696 0.0404 0.0730

• P (a|p) is the probability that participant p generates activity a,
again with smoothing, and
• P (q|a) is the query likelihood of activity a, estimated by the

occurrences of the verb-object words of a in the query, once
more with smoothing.

Experimental Setup. As there is no similar activity search system
or evaluation dataset, we construct a benchmark dataset by gath-
ering 100 queries of a predefined frame (S V O1 O2 Location

Time), such as, man kissed the girl on the cheek at the movie the-
ater in the evening. For this, we relied on a user interface as in
Table 8, asking two people (one outsider and one of the authors)
to enter arbitrary queries of their choice, as long as it fit the tem-
plate. Further examples of these gathered queries include frying
onion and killing a bird.

For this set of 100 queries, we generate search results using our
generative model over the Movie script, Crowdsourcing, Sitcom,
TV series, and Novels datasets.

For comparison, we also obtain the search results using a text-
retrieval baseline, in particular, a statistical language model with
Dirichlet smoothing, as implemented in the well-known INDRI
system [39].

Two annotators evaluated the top-10 results for each of these
queries both for the baseline and the Knowlywood search system.
Each result was scored between 1 (irrelevant) to 5 (perfectly rele-
vant). The final rating for each result is given by the average of the
ratings by the two annotators.

The annotation ratings were then used to compute four widely-
used IR evaluation metrics, namely NDCG, Precision@k, MAP,
and MRR [21].

Scene Search Results. Table 9 gives a comparative analysis of the
NDCG, MAP, Precision@5, and MRR scores for both search meth-
ods. Since MAP, Precision@5, and MRR involve binary notions of
relevance, we assume that those scenes that are rated with a score
of at least 3 are the only relevant scenes.

We observe that for all four metrics, the Knowlywood search
method performs best. We observed that the text retrieval engine
often returns scenes with script text that closely matches the words
in the query, while Knowlywood achieves a higher level of abstrac-
tion. For example, given the query man climbs mountain, the text
engine favors scenes with many occurrences of the keywords moun-
tain and climb, but not used in the specific sense of climbing moun-
tains. The Knowlywood search method, on the other hand, uncov-
ers those scenes that portray the activity, even if they do not contain
the word mountain explicitly, but just semantically related expres-
sions such as hiking up a hill etc. The Knowlywood search also
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Table 10: Anecdotal examples for Scene Search results
Query Knowlywood based scheme Text based retrieval scheme

man climbs mountain .. following Jack , and helps him climb a mountain
and find a crystal that will transport Jack home both...
from TV series: Samurai Jack

.. from deep in the mountains ... had entered

the Mountain ...carried deeper into the mountain .

.... climbs out of the river... looking for the Mountain
of Skulls as well...turns his attention to Lysinka and the
others down the mountain .. from Novel: Conan

man shoots video .. While shooting Dixons music video , Silver gets
a call from the fertility clinic informing her that the
IVF procedure has been moved up to the next day ..
from Beverly Hills, 90210

.. the woman shoots Alex with a video game gun
as the woman traps her in the game that the..
from TV series: Totally Spies

kill a bird ..mark go hunting with sophie ’s dad. jeremy go hunt-
ing with sophie ’s dad. mark tries to kill a bird . the
man injures it simply. the man tries to break its neck..
from Sitcom: Peep Show

.. Carlos and Susan are still painting over
the graffiti on the wall as those people discuss
To Kill a Mocking Bird , however , while talking

, .. from TV series: Desperate Housewives

correctly identifies the true meaning of an activity even if it con-
tains verbs with ambiguous meaning. For example, the query shoot
a video is often interpreted wrongly by the text retrieval engine and
therefore it returns irrelevant snippets referring to shooting with a
gun, etc. Table 10 provides some anecdotal examples of queries
and scene search results by the two competitors.

8. RELATED WORK
Large-scale knowledge graphs have become a major trend both

in academia (DBpedia, NELL, Yago, etc.) and industry (Google,
Microsoft, etc.). However, these are focused on facts about in-
dividual entities, rather than commonsense. Commonsense KBs
like ConceptNet [17], VerbOcean [10], or WebChild [41], on the
other hand, focus on simpler relationships between concepts such
as partOf, usedFor, hasColor, hasShape, etc.

Formal upper-level ontologies such as Cyc [22] and SUMO [26]
contain some activity knowledge like agents involved in concepts
expressed by verbs. For example, SUMO knows that kissing in-
volves two humans as agents and their lips. However, this is manu-
ally modeled and the amount of activity knowledge in these ontolo-
gies is tiny compared to what Knowlywood captures. Also, these
ontologies focus on knowledge that is expressible in first-order log-
ics, and lack commonsense knowledge offered by Knowlywood
such as typical locations, times, prev./next chains, and participants.

Interest in human activities goes back to Schank and Abelson’s
early work on scripts [35], where procedural knowledge was gath-
ered manually. More recently, such knowledge has been crowd-
sourced via Amazon Mechanical Turk [32], but this data only cov-
ers 22 stereotypical scenarios. Other research has developed ways
to mine activity knowledge from the Web using text analysis [8]
and deep neural networks [23]. These methods aim at solving small
temporal ordering tasks, which is different from our goal of produc-
ing a large KB. [37] analyze a collection of event similarity data,
but do not construct any new activities.

Regarding multimodal data, [9] attempt to mine a large-scale
collection of simple conceptual knowledge from images, e.g. that
wheels are parts of cars. However, this work does not recognize
activities. [33] relate crowdsourced activity descriptions to videos.
However, this is a very small collection of only 26 activity types.
Activities play an important role in different domains. [42] present
a KB of object affordances for robotics, but cover only 250 objects.

Semantic parsing has received much attention in computational
linguistics recently; see [1] and references there. So far it has been

applied only to specific use-cases like natural-language question
answering [4, 13] or understanding temporal expressions [19]. We
believe that our work is the first to apply semantic parsing to large
amounts of narrative text for KB construction. Our methodology
uses techniques like ILP and graphical models that have been pre-
viously used in natural language analysis. However, applying them
to the huge input in our setting requires judicious design decisions
that are not straightforward at all.

Semantic role labeling (SRL) [16, 28] is highly related to se-
mantic parsing, the goal being to fill the slots of a pre-defined frame
with arguments from a sentence. However, state-of-the-art methods
are slow and do not work well for our task of activity knowledge
acquisition. Moreover, SRL methods typically consider Propbank
[27] as a backbone, and Propbank lacks the semantic organization
of verbs that VerbNet provides.

Word sense disambiguation (WSD) [25] is another component
in semantic parsing and semantic role labeling. We use the state-
of-the-art tool IMS (It-Makes-Sense) [43] as a WSD prior for our
joint disambiguation ILP. Note, though, that WSD alone focuses
on the lexical semantics of individual words – this is still far from
full-fledged semantic parsing for populating an activity KB.

Taxonomy induction has a rich body of prior work in NLP and
AI. However, this is primarily for hypernymy (isa, subclasses) be-
tween general concepts (classes, noun senses) (see, e.g., [31, 29]
and references given there). There is little research on taxonomy
induction for verbal phrases [20, 10, 24]. But this line of work
does not consider rich attributes for actions, and is about general
verbs rather than focused on human activities.

9. CONCLUSION
We have presented Knowlywood, the first comprehensive KB

of human activities. It provides a semantically refined hierarchy
of activity types, participating agents, spatio-temporal information,
information about activity sequences, as well as links to visual
contents. Our algorithms ensure that the entries are fully disam-
biguated and that inconsistent attributes are removed. Our experi-
ments show that Knowlywood compares favorably to several base-
lines, including in use cases such as tag recommendations. We
believe that the resulting collection of around one million activity
frames is an important asset for a variety of applications such as
image and video understanding.
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