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 Motivation
 Text queries are naturally encoded with user 

intentions

 Words from different topic categories tend to co-
occur in medical related queries

 This work aims to discover user intentions from 
medical-related text queries that users provided 
online
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 Goal
 Input : medical query

 Output :  intentions
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 Definition of intention

 By describing related information in concept s, the 
user is looking for corresponding information about 
concept n.
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 Pairwise feature correlation matrix

 sim(Mi,Mj) : the similarity between feature Mi and 
Mj
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 Convolution operation

 k filters

 tk : weight matrix

 x : convolution region

 bk : bias 

 f : ReLU(x) = max(0,x)
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 Pooling operation
 a subsampling function that

returns the maximum of a set of values


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 POS tagging is used as word categories

 Calculate the number of occurrence of each tag

 Fully connected layer : estimate the contribution of 
different POS tags
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 To overcome the domain coverage challenge.

 “ I have been taking Tylenol .”

 “ I have been taking aspirin”

 Tylenol & aspirin :

the word category is “n-medicine”

 Concatenate results and reduce dimension
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 Data augmentation
 To reduce overfitting

 Sentence Rephrasing 

 Use the nearest neighbors of a word in a vector 
space to generate candidate rephrasing words

 Constrain original word and candidate words with 
a equality constraint on POS type as well as 
similarity constraints
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 Data augmentation
 Calculate the nearest neighbors of words

 Check each candidate word that whether it has the 
same tag with each word

 Use threshold for the similarity measurement

 If the new word meets those constrains, then 
replacing this old word by the candidate word to 
generate a new query
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 Dropout
 A regulation method to overcome co-adapting of 

feature detectors

 To reduce test error

 Dropout layer is applied after each pooling layer 
with 0.5 probability
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 corpus : http://club.xywy.com/

 64 million records

 Pre-processing : word segmentation

 Use word2vec to train vector representation of words

 The vectors have dimensionality of 100 and were 
trained using the Skip-gram

 Window size : 8

 Minimum occurrence count : 5
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 SVM-FC (Feature-level Correlation)

 LR-FC (Logistic Regression)

 NNID-ZP (Zero Padding)

 NNID-FC 

 NNID-JM (Jointly Modeling)

 NNID-JMSR (Sentence Rephrasing)
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 Intention detection for medical query will provide a 
new opportunity to connect patients with medical 
resources more seamlessly both in physical world and 
on the WWW

 Present a jointly modeling approach to model 
intentions that users encoded in medical related text 
queries

 The method can be generalized and integrated into 
other existing applications as well


