MINING USER INTENTIONS FROM MEDICAL QUERIES: A NEURAL NETWORK BASED HETEROGENEOUS JOINTLY MODELING APPROACH

Source: WWW'16

Advisor: Jia-Lin, Koh

Speaker: Ming-Chieh, Chiang

Date: 2017/12/05

Outline

- >Introduction
- Method
- Experiment
- Conclusion

Introduction

Motivation

- Text queries are naturally encoded with user intentions
- Words from different topic categories tend to cooccur in medical related queries
- This work aims to discover user intentions from medical-related text queries that users provided online

Introduction

- Goal
 - Input : medical query
 - > Output: intentions

Introduction

Definition of intention

$$I = \{\langle s, n \rangle\}$$

By describing related information in concept s, the user is looking for corresponding information about concept n.

Outline

- > Introduction
- > Method
- Experiment
- Conclusion

Architecture

Feature-level modeling

Pairwise feature correlation matrix

> sim(Mi,Mj): the similarity between feature Mi and

$$S = \begin{bmatrix} sim(M_1, M_1) & sim(M_1, M_2) & \cdots & sim(M_1, M_m) \\ sim(M_2, M_1) & sim(M_2, M_2) & & sim(M_2, M_m) \\ \vdots & \vdots & & \vdots \\ sim(M_m, M_1) & sim(M_m, M_2) & \cdots & sim(M_m, M_m) \end{bmatrix}$$

Feature-level modeling

Convolution operation

$$c = f(\mathbf{t}_k \cdot \mathbf{x} + b_k)$$

- k filters
- > tk: weight matrix
- > x : convolution region
- > bk : bias
- > f : ReLU(x) = max(0,x)

Feature-level modeling

- Pooling operation
 - > a subsampling function that returns the maximum of a set of values

POS tagging

- > POS tagging is used as word categories
- > Calculate the number of occurrence of each tag
- Fully connected layer: estimate the contribution of different POS tags

Jointly modeling

- > To overcome the domain coverage challenge.
- " I have been taking Tylenol."
- " I have been taking aspirin"
- Tylenol & aspirin : the word category is "n-medicine"
- Concatenate results and reduce dimension

Increasing model generalization ability

- Data augmentation
 - > To reduce overfitting
 - Sentence Rephrasing
 - Use the nearest neighbors of a word in a vector space to generate candidate rephrasing words
 - Constrain original word and candidate words with a equality constraint on POS type as well as similarity constraints

Increasing model generalization ability

- Data augmentation
 - Calculate the nearest neighbors of words
 - Check each candidate word that whether it has the same tag with each word
 - > Use threshold for the similarity measurement
 - If the new word meets those constrains, then replacing this old word by the candidate word to generate a new query

Increasing model generalization ability

Dropout

- A regulation method to overcome co-adapting of feature detectors
- > To reduce test error
- Dropout layer is applied after each pooling layer with 0.5 probability
 Dropout Training

Outline

- > Introduction
- Method
- **Experiment**
- Conclusion

Dataset

- corpus: http://club.xywy.com/
- > 64 million records
- Pre-processing : word segmentation
- Use word2vec to train vector representation of words
- The vectors have dimensionality of 100 and were trained using the Skip-gram
- > Window size: 8
- > Minimum occurrence count: 5

Baseline methods

- SVM-FC (Feature-level Correlation)
- LR-FC (Logistic Regression)
- NNID-ZP (Zero Padding)
- > NNID-FC
- NNID-JM (Jointly Modeling)
- NNID-JMSR (Sentence Rephrasing)

Performance

Figure 7: Recall of NNID-FC vs NNID-ZP.

Performance

Figure 8: NNID-FC vs LR-FC vs SVM-FC

Figure 9: NNID-JM vs NNID-FC.

Performance

Figure 10: NNID-JMSR vs NNID-JM.

Figure 11: Testing error on top-1 prediction for NNID-JMSR and NNID-JM.

21

Case

•Query: How much does it costs for a Lumbar CT? Recently my lumbar always hurts. (腰椎CT检查大概需要多少费用? 最近后腰老是酸疼。)

Prediction:

Rank	Intention	Probability
1	<examine,fee></examine,fee>	0.986955
2	<symptom, examine=""></symptom,>	0.012433
3	<symptom,department></symptom,department>	0.000475
4	<disease,department></disease,department>	8.50e-05
5	<examine,diagnose></examine,diagnose>	3.51e-05

Outline

- > Introduction
- Method
- Experiment
- > Conclusion

Conclusion

- Intention detection for medical query will provide a new opportunity to connect patients with medical resources more seamlessly both in physical world and on the WWW
- Present a jointly modeling approach to model intentions that users encoded in medical related text queries
- The method can be generalized and integrated into other existing applications as well