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Introduction

> Motivation

> Text queries are naturally encoded with user
intentions

> Words from different topic categories tend to co-
occur in medical related queries

> This work aims to discover user intentions from
medical-related text queries that users provided
online



Introduction

> Goadl
> Input : medical query

> Output : intentions

-

ntion

Query =ction Intention

“| got a temperature of 103 degrees. Should | take Tylenol?” = < Symptom, Medicine>

“What do you think of using Ketamine for deprassion?” - < Medicine, Instruction>

“Can | get a kidney infection from a tooth infection?” # < Disease, Syndrome>

< Surgery, Recover>
“How long after gastritis surgery can | have spicy food?” - < Disgasg, Diet>
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Introduction

> Definition of intention
I ={< s,m>}

> By describing related information in concept s, the
user is looking for corresponding information about

concept n.
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Feature-level model

ing

> Pairwise feature correlation matrix
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Feature-level modeling

» Convolution operation
c= f(tx -x+ bi)
> k filters

> tk : weight matrix

> X : convolution region

> bk : bias
> f : ReLU(x) = max(0,x)




> Pooling operation

> a subsampling function that

returns the maximum of a set of values

Single depth slice
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POS tagging

> POS tagging is used as word categories

» Calculate the number of occurrence of each tag

> Fully connected layer : estimate the contribution of

different POS tags
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Jointly modeling

>

>

>

To overcome the domain coverage challenge.

“| have been taking Tylenol .”

“1 have been taking aspirin” ;)
5 (4™
. . 39 0 5
Tylenol & aspirin : LR
the word category is “n-medicine” 3 A
Concatenate results and reduce dimension - - o @
e




Increasing model generalization ability

> Data augmentation
> To reduce overfitting
> Sentence Rephrasing

> Use the nearest neighbors of a word in a vector
space to generate candidate rephrasing words

» Constrain original word and candidate words with
a equality constraint on POS type as well as
similarity constraints




Increasing model generalization ability

> Data augmentation
> Calculate the nearest neighbors of words

> Check each candidate word that whether it has the
same tag with each word

> Use threshold for the similarity measurement

> If the new word meets those constrains, then
replacing this old word by the candidate word to
generate a new query




Increasing model generalization ability

> Dropout

> A regulation method to overcome co-adapting of
feature detectors

> To reduce test error

> Dropout layer is applied after each pooling layer
with 0.5 probability Dropout Training
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Dataset

> COrpus :

> 64 million records

> Pre-processing : word segmentation

> Use word2vec to train vector representation of words

> The vectors have dimensionality of 100 and were
trained using the Skip-gram

> Window size : 8

> Minimum occurrence count : 5



Baseline methods

>

>

SVM-FC (Feature-level Correlation)
LR-FC (Logistic Regression)

NN
NN
NN
NN

D-ZP (Zero Padding)

D-FC

D-JM (Jointly Modeling)
D-JMSR (Sentence Rephrasing)



Performance
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Case

eQuery: How much does it costs for a Lumbar CT7 Re-
cently my lumbar always hurts. (EECTRE R E £ D
Y sl loBEEZEERE - )

Prediction:
Rank Intention Probability
1 < examine,fee> 0.986955
2 <symptom,examine>> 0.012433
3 <symptom.department> 0.000475
4 < disease,department > 8.50e-05
5 <examine,diagnose> 3.51e-05
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Conclusion

> Intention detection for medical query will provide a
new opportunity to connect patients with medical
resources more seamlessly both in physical world and

on the WWW

> Present a jointly modeling approach to model
intentions that users encoded in medical related text
queries

> The method can be generalized and integrated into
other existing applications as well



