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ABSTRACT

Online news recommender systems aim to address the informa-

tion explosion of news and make personalized recommendation for

users. In general, news language is highly condensed, full of knowl-

edge entities and common sense. However, existing methods are

unaware of such external knowledge and cannot fully discover la-

tent knowledge-level connections among news. The recommended

results for a user are consequently limited to simple patterns and

cannot be extended reasonably. To solve the above problem, in

this paper, we propose a deep knowledge-aware network (DKN) that

incorporates knowledge graph representation into news recom-

mendation. DKN is a content-based deep recommendation frame-

work for click-through rate prediction. The key component of DKN

is a multi-channel and word-entity-aligned knowledge-aware con-

volutional neural network (KCNN) that fuses semantic-level and

knowledge-level representations of news. KCNN treats words and

entities asmultiple channels, and explicitly keeps their alignment re-

lationship during convolution. In addition, to address users’ diverse

interests, we also design an attention module in DKN to dynami-

cally aggregate a user’s history with respect to current candidate

news. Through extensive experiments on a real online news plat-

form, we demonstrate that DKN achieves substantial gains over

state-of-the-art deep recommendation models. We also validate the

efficacy of the usage of knowledge in DKN.
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1 INTRODUCTION

With the advance of the World Wide Web, people’s news reading

habits have gradually shifted from traditional media such as news-

papers and TV to the Internet. Online newswebsites, such as Google

News1 and Bing News2, collect news from various sources and pro-

vide an aggregate view of news for readers. A notorious problem
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Figure 1: Illustration of two pieces of news connected

through knowledge entities.

with online news platforms is that the volume of articles can be

overwhelming to users. To alleviate the impact of information over-

loading, it is critical to help users target their reading interests and

make personalized recommendations [2, 25, 27, 32, 34, 39].

Generally, news recommendation is quite difficult as it poses

three major challenges. First, unlike other items such as movies [9]

and restaurants [12], news articles are highly time-sensitive and

their relevance expires quickly within a short period (see Section

5.1). Out-of-date news are substituted by newer ones frequently,

which makes traditional ID-based methods such as collaborative

filtering (CF) [41] less effective. Second, people are topic-sensitive

in news reading as they are usually interested in multiple specific

news categories (see Section 5.5). How to dynamically measure

a user’s interest based on his diversified reading history for cur-

rent candidate news is key to news recommender systems. Third,

news language is usually highly condensed and comprised of a

large amount of knowledge entities and common sense. For ex-

ample, as shown in Figure 1, a user clicks a piece of news with

title “Boris Johnson Has Warned Donald Trump To Stick To The

Iran Nuclear Deal" that contains four knowledge entities: “Boris

Johnson”, “Donald Trump”, “Iran” and “Nuclear”. In fact, the user

may also be interested in another piece of news with title “North

Korean EMP Attack Would Cause Mass U.S. Starvation, Says Con-

gressional Report” with high probability, which shares a great deal

of contextual knowledge and is strongly connected with the previ-

ous one in terms of commonsense reasoning. However, traditional

semantic models [30] or topic models [3] can only find their relat-

edness based on co-occurrence or clustering structure of words, but

are hardly able to discover their latent knowledge-level connection.

As a result, a user’s reading pattern will be narrowed down to a

limited circle and cannot be reasonably extended based on existing

recommendation methods.

To extract deep logical connections among news, it is necessary

to introduce additional knowledge graph information into news

recommendations. A knowledge graph is a type of directed het-

erogeneous graph in which nodes correspond to entities and edges
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correspond to relations. Recently, researchers have proposed sev-

eral academic knowledge graphs such as NELL3 and DBpedia4, as

well as commercial ones such as Google Knowledge Graph5 and

Microsoft Satori6. These knowledge graphs are successfully applied

in scenarios of machine reading[51], text classification[46], and

word embedding[49].

Considering the above challenges in news recommendation and

inspired by the wide success of leveraging knowledge graphs, in

this paper, we propose a novel framework that takes advantage of

external knowledge for news recommendation, namely the deep

knowledge-aware network (DKN). DKN is a content-based model

for click-through rate (CTR) prediction, which takes one piece of

candidate news and one user’s click history as input, and outputs

the probability of the user clicking the news. Specifically, for a

piece of input news, we first enrich its information by associating

each word in the news content with a relevant entity in the knowl-

edge graph. We also search and use the set of contextual entities of

each entity (i.e., its immediate neighbors in the knowledge graph)

to provide more complementary and distinguishable information.

Then we design a key component in DKN, namely knowledge-aware

convolutional neural networks (KCNN), to fuse the word-level and

knowledge-level representations of news and generate a knowledge-

aware embedding vector. Distinct from existing work [46], KCNN

is: 1) multi-channel, as it treats word embedding, entity embedding,

and contextual entity embedding of news as multiple stacked chan-

nels just like colored images; 2) word-entity-aligned, as it aligns a

word and its associated entity in multiple channels and applies a

transformation function to eliminate the heterogeneity of the word

embedding and entity embedding spaces.

Using KCNN, we obtain a knowledge-aware representation vec-

tor for each piece of news. To get a dynamic representation of a user

with respect to current candidate news, we use an attentionmodule

to automatically match candidate news to each piece of clicked

news, and aggregate the user’s history with different weights. The

user’s embedding and the candidate news’ embedding are finally

processed by a deep neural network (DNN) for CTR prediction.

Empirically, we apply DKN to a real-world dataset from Bing

News with extensive experiments. The results show that DKN

achieves substantial gains over state-of-the-art deep-learning-based

methods for recommendation. Specifically, DKN significantly out-

performs baselines by 2.8% to 17.0% on F1 and 2.6% to 16.1% on

AUC with a significance level of 0.1. The results also prove that the

usage of knowledge and an attention module can bring additional

3.5% and 1.4% in improvement, respectively, in the DKN framework.

Moreover, we present a visualization result of attention values to

intuitively demonstrate the efficacy of the usage of the knowledge

graph in Section 5.5.

2 PRELIMINARIES

In this section, we present several concepts and models related to

this work, including knowledge graph embedding and convolu-

tional neural networks for sentence representation learning.

3http://rtw.ml.cmu.edu/rtw/
4http://wiki.dbpedia.org/
5https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
6https://searchengineland.com/library/bing/bing-satori

2.1 Knowledge Graph Embedding

A typical knowledge graph consists of millions of entity-relation-

entity triples (h, r , t), in which h, r and t represent the head, the
relation, and the tail of a triple, respectively. Given all the triples in

a knowledge graph, the goal of knowledge graph embedding is to

learn a low-dimensional representation vector for each entity and

relation that preserves the structural information of the original

knowledge graph. Recently, translation-based knowledge graph

embedding methods have received great attention due to their

concise models and superior performance. To be self-contained, we

briefly review these translation-based methods in the following.

• TransE [4] wants h + r ≈ t when (h, r , t) holds, where h, r

and t are the corresponding representation vector of h, r and
t . Therefore, TransE assumes the score function

fr (h, t) = ‖h + r − t‖2
2

(1)

is low if (h, r , t) holds, and high otherwise.

• TransH [48] allows entities to have different representations

when involved in different relations by projecting the entity

embeddings into relation hyperplanes:

fr (h, t) = ‖h⊥ + r − t⊥‖
2
2
, (2)

where h⊥ = h − w
�
r hwr and t⊥ = t − w

�
r twr are the pro-

jections of h and t to the hyperplane wr , respectively, and

‖wr ‖2 = 1.

• TransR [26] introduces a projection matrix Mr for each rela-

tion r to map entity embeddings to the corresponding relation

space. The score function in TransR is defined as

fr (h, t) = ‖hr + r − tr ‖
2
2 , (3)

where hr = hMr and tr = tMr .

• TransD [18] replaces the projection matrix in TransR by the

product of two projection vectors of an entity-relation pair:

fr (h, t) = ‖h⊥ + r − t⊥‖
2
2
, (4)

where h⊥ = (rph
�
p + I)h, t⊥ = (rp t

�
p + I)t, hp , rp and tp are

another set of vectors for entities and relations, and I is the

identity matrix.

To encourage the discrimination between correct triples and

incorrect triples, for all the methods above, the following margin-

based ranking loss is used for training:

L =
∑

(h,r,t )∈Δ

∑

(h′,r,t ′)∈Δ′

max
(
0, fr (h, t) + γ − fr (h

′, t ′)
)
, (5)

where γ is the margin, Δ and Δ′ are the set of correct triples and

incorrect triples.

2.2 CNN for Sentence Representation Learning

Traditional methods [1, 43] usually represent sentences using the

bag-of-words (BOW) technique, i.e., taking word counting statistics

as the feature of sentences. However, BOW-based methods ignore

word orders in sentences and are vulnerable to the sparsity problem,

which leads to poor generalization performance. A more effective

way to model sentences is to represent each sentence in a given

corpus as a distributed low-dimensional vector. Recently, inspired

by the success of applying convolutional neural networks (CNN)

in the filed of computer vision [23], researchers have proposed
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Figure 2: A typical architecture of CNN for sentence repre-

sentation learning [20].

many CNN-based models for sentence representation learning [7,

19, 20, 53] 7. In this subsection, we introduce a typical type of CNN

architecture, namely Kim CNN [20].

Figure 2 illustrates the architecture of Kim CNN. Letw1:n be the

raw input of a sentence of length n, and w1:n = [w1 w2 ... wn ] ∈

R
d×n be the word embedding matrix of the input sentence, where

wi ∈ R
d×1 is the embedding of the i-th word in the sentence and

d is the dimension of word embeddings. A convolution operation

with filter h ∈ Rd×l is then applied to the word embedding matrix

w1:n , where l (l ≤ n) is the window size of the filter. Specifically, a

feature ci is generated from a sub-matrix wi :i+l−1 by

ci = f (h ∗wi :i+l−1 + b), (6)

where f is a non-linear function, ∗ is the convolution operator, and

b ∈ R is a bias. After applying the filter to every possible position

in the word embedding matrix, a feature map

c = [c1, c2, ..., cn−l+1] (7)

is obtained, then a max-over-time pooling operation is used on

feature map c to identify the most significant feature:

c̃ = max{c} = max{c1, c2, ..., cn−l+1}. (8)

One can use multiple filters (with varying window sizes) to obtain

multiple features, and these features are concatenated together to

form the final sentence representation.

3 PROBLEM FORMULATION

We formulate the news recommendation problem in this paper as

follows. For a given user i in the online news platform, we denote

his click history as {t i1, t
i
2, ..., t

i
Ni

}, where t ij (j = 1, ...,Ni ) is the

title8 of the j-th news clicked by user i , andNi is the total number of

user i’s clicked news. Each news title t is composed of a sequence of

words, i.e., t = [w1,w2, ...], where each wordw may be associated

with an entity e in the knowledge graph. For example, in the title

“Trump praises Las Vegas medical team”, “Trump” is linked with

7Researchers have also proposed other types of neural network models for sentence
modeling such as recurrent neural networks [40], recursive neural networks [38],
and hybrid models [24]. However, CNN-based models are empirically proven to be
superior than others [15], since they can detect and extract specific local patterns from
sentences due to the convolution operation. To keep our presentation focused, we
only discuss CNN-based models in this paper.
8In addition to title, it is also viable to use abstracts or snippets of news. In this paper,
we only take news titles as input, since a title is a decisive factor affecting users’
choice of reading. But note that our approach can be easily generalized to any sort of
news-related texts.

the entity “Donald Trump", while “Las” and “Vegas” are linked

with the entity “Las Vegas". Given users’ click history as well as

the connection between words in news titles and entities in the

knowledge graph, we aim to predict whether user i will click a

candidate news tj that he has not seen before.

4 DEEP KNOWLEDGE-AWARE NETWORK

In this section, we present the proposed DKN model in detail. We

first introduce the overall framework of DKN, then discuss the

process of knowledge distillation from a knowledge graph, the

design of knowledge-aware convolutional neural networks (KCNN),

and the attention-based user interest extraction, respectively.

4.1 DKN Framework

The framework of DKN is illustrated in Figure 3. We introduce the

architecture of DKN from the bottom up. As shown in Figure 3, DKN

takes one piece of candidate news and one piece of a user’s clicked

news as input. For each piece of news, a specially designed KCNN

is used to process its title and generate an embedding vector. KCNN

is an extension of traditional CNN that allows flexibility in incorpo-

rating symbolic knowledge from a knowledge graph into sentence

representation learning. We will detail the process of knowledge

distillation in Section 4.2 and the KCNN module in Section 4.3,

respectively. By KCNN, we obtain a set of embedding vectors for

a user’s clicked history. To get final embedding of the user with

respect to the current candidate news, we use an attention-based

method to automatically match the candidate news to each piece

of his clicked news, and aggregate the user’s historical interests

with different weights. The details of attention-based user interest

extraction are presented in Section 4.4. The candidate news embed-

ding and the user embedding are concatenated and fed into a deep

neural network (DNN) to calculate the predicted probability that

the user will click the candidate news.

4.2 Knowledge Distillation

The process of knowledge distillation is illustrated in Figure 4,

which consists of four steps. First, to distinguish knowledge entities

in news content, we utilize the technique of entity linking [31, 36] to

disambiguate mentions in texts by associating themwith predefined

entities in a knowledge graph. Based on these identified entities, we

construct a sub-graph and extract all relational links among them

from the original knowledge graph. Note that the relations among

identified entities only may be sparse and lack diversity. Therefore,

we expand the knowledge sub-graph to all entities within one hop

of identified ones. Given the extracted knowledge graph, a great

many knowledge graph embedding methods, such as TransE [4],

TransH [48], TransR [26], and TransD [18], can be utilized for entity

representation learning. Learned entity embeddings are taken as

the input for KCNN in the DKN framework.

It should be noted that though state-of-the-art knowledge graph

embedding methods could generally preserve the structural infor-

mation in the original graph, we find that the information of learned

embedding for a single entity is still limited when used in subse-

quent recommendations. To help identify the position of entities in

the knowledge graph, we propose extracting additional contextual

information for each entity. The “context” of entity e is defined as
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Figure 3: Illustration of the DKN framework.
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Figure 4: Illustration of knowledge distillation process.

the set of its immediate neighbors in the knowledge graph, i.e.,

context(e) = {ei | (e, r , ei ) ∈ G or (ei , r , e) ∈ G}, (9)

where r is a relation and G is the knowledge graph. Since the

contextual entities are usually closely related to the current entity

with respect to semantics and logic, the usage of context could

provide more complementary information and assist in improving

the identifiability of entities. Figure 5 illustrates an example of

context. In addition to use the embedding of “Fight Club” itself to

represent the entity, we also include its contexts, such as “Suspense”

(genre), “Brad Pitt” (actor), “United States” (country) and “Oscars”

(award), as its identifiers. Given the context of entity e , the context
embedding is calculated as the average of its contextual entities:

e =
1

|context(e)|

∑

ei ∈context (e)

ei , (10)

where ei is the entity embedding of ei learned by knowledge graph

embedding. We empirically demonstrate the efficacy of context

embedding in the experiment section.

Fight Club

Brad Pitt

United States

Suspense

Oscars

Inception

award.winner

film.genre

people.nationality

Leonardo 
DiCaprio

film.actor

people.nationality

Los Angeles

location.address

people.gender.male

people.gender

Donald Trump

people.gender

Republican 
Party

polititian.party

Context of entities 
“Fight Club”

film.genre
film.actor

film.country

people.place_of_birth

award.nominated_
work

Figure 5: Illustration of context of an entity in a knowledge

graph.

4.3 Knowledge-aware CNN

Following the notations used in Section 2.2, we use t = w1:n =

[w1,w2, ...,wn ] to denote the raw input sequence of a news title

t of length n, and w1:n = [w1 w2 ... wn ] ∈ Rd×n to denote the

word embedding matrix of the title, which can be pre-learned from

a large corpus or randomly initialized. After the knowledge distilla-

tion introduced in Section 4.2, each wordwi may also be associated

with an entity embedding ei ∈ R
k×1 and the corresponding con-

text embedding ei ∈ Rk×1, where k is the dimension of entity

embedding.

Given the input above, a straightforward way to combine words

and associated entities is to treat the entities as “pseudo words” and

concatenate them to the word sequence [46], i.e.,

W = [w1 w2 ... wn et1 et2 ...], (11)

where {etj } is the set of entity embeddings associated with this

news title. The obtained new sentence W is fed into CNN [20] for

Track: Industry WWW 2018, April 23-27, 2018, Lyon, France

1838



further processing. However, we argue that this simple concate-

nating strategy has the following limitations: 1) The concatenating

strategy breaks up the connection between words and associated

entities and is unaware of their alignment. 2) Word embeddings

and entity embeddings are learned by different methods, meaning

it is not suitable to convolute them together in a single vector space.

3) The concatenating strategy implicitly forces word embeddings

and entity embeddings to have the same dimension, which may not

be optimal in practical settings since the optimal dimensions for

word and entity embeddings may differ from each other.

Being aware of the above limitations, we propose amulti-channel

and word-entity-aligned KCNN for combining word semantics and

knowledge information. The architecture of KCNN is illustrated in

the left lower part of Figure 3. For each news title t = [w1,w2, ...,wn ],

in addition to use its word embeddings w1:n = [w1 w2 ... wn ] as

input, we also introduce the transformed entity embeddings

д(e1:n ) = [д(e1) д(e2) ... д(en )] (12)

and transformed context embeddings

д(e1:n ) = [д(e1) д(e2) ... д(en )] (13)

as source of input9, where д is the transformation function. In

KCNN, д can be either linear

д(e) = Me (14)

or non-linear

д(e) = tanh(Me + b), (15)

where M ∈ Rd×k is the trainable transformation matrix and b ∈

R
d×1 is the trainable bias. Since the transformation function is

continuous, it can map the entity embeddings and context embed-

dings from the entity space to the word space while preserving

their original spatial relationship. Note that word embeddingsw1:n ,

transformed entity embeddings д(e1:n ) and transformed context

embeddings д(e1:n ) are the same size and serve as the multiple

channels analogous to colored images. We therefore align and stack

the three embedding matrices as

W =
[
[w1 д(e1)д(e1)] [w2 д(e2)д(e2)] ... [en д(en )д(en )]

]
∈ Rd×n×3.

(16)

After getting the multi-channel input W, similar to Kim CNN

[20], we apply multiple filters h ∈ Rd×l×3 with varying window

sizes l to extract specific local patterns in the news title. The local

activation of sub-matrix Wi :i+l−1 with respect to h can be written

as

chi = f (h ∗Wi :i+l−1 + b), (17)

andwe use amax-over-time pooling operation on the output feature

map to choose the largest feature:

c̃h = max{ch1 , c
h
2 , ..., c

h
n−l+1}. (18)

All features c̃hi are concatenated together and taken as the final

representation e(t) of the input news title t , i.e.,

e(t) = [c̃h1 c̃h2 ... c̃hm ], (19)

wherem is the number of filters.

9
ei and ei are set as zero ifwi has no corresponding entity.

4.4 Attention-based User Interest Extraction

Given user i with clicked history {t i1, t
i
2, ..., t

i
Ni

}, the embeddings of

his clicked news can be written as e(t i1), e(t
i
2), ..., e(t

i
Ni
). To represent

user i for the current candidate news tj , one can simply average all

the embeddings of his clicked news titles:

e(i) =
1

Ni

Ni∑

k=1

e(t i
k
). (20)

However, as discussed in the introduction, a user’s interest in news

topics may be various, and user i’s clicked items are supposed to

have different impacts on the candidate news tj when considering

whether user i will click tj . To characterize user’s diverse interests,

we use an attention network [47, 54] to model the different impacts

of the user’s clicked news on the candidate news. The attention net-

work is illustrated in the left upper part of Figure 3. Specifically, for

user i’s clicked news t i
k
and candidate news tj , we first concatenate

their embeddings, then apply a DNNH as the attention network

and the softmax function to calculate the normalized impact weight:

st i
k
,tj
= softmax

(
H

(
e(t i

k
), e(tj )

) )
=

exp
(
H

(
e(t i

k
), e(tj )

) )

∑Ni

k=1
exp

(
H

(
e(t i

k
), e(tj )

) ) .

(21)

The attention networkH receives embeddings of two news titles

as input and outputs the impact weight. The embedding of user i
with respect to the candidate news tj can thus be calculated as the

weighted sum of his clicked news title embeddings:

e(i) =

Ni∑

k=1

st i
k
,tj

e(t i
k
). (22)

Finally, given user i’s embedding e(i) and candidate news tj ’s em-

bedding e(tj ), the probability of user i clicking news tj is predicted
by another DNN G:

pi,tj = G
(
e(i), e(tj )

)
. (23)

We will demonstrate the efficacy of the attention network in the

experiment section.

5 EXPERIMENTS

In this section, we present our experiments and the corresponding

results, including dataset analysis and comparison of models. We

also give a case study about user’s reading interests and make

discussions on tuning hyper-parameters.

5.1 Dataset Description

Our dataset comes from the server logs of Bing News. Each piece of

log mainly contains the timestamp, user id, news url, news title, and

click count (0 for no click and 1 for click). We collect a randomly

sampled and balanced dataset fromOctober 16, 2016 to June 11, 2017

as the training set, and from June 12, 2017 to August 11, 2017 as the

test set. Additionally, we search all occurred entities in the dataset

as well as the ones within their one hop in the Microsoft Satori

knowledge graph, and extract all edges (triples) among them with

confidence greater than 0.8. The basic statistics and distributions

of the news dataset and the extracted knowledge graph are shown

in Table 1 and Figure 6, respectively.
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Table 1: Basic statistics of the news dataset and the extracted

knowledge graph.

# users 141,487 # triples 7,145,776

# news 535,145 avg. # words per title 7.9

# logs 1,025,192 avg. # entities per title 3.7

# entities 336,350 avg. # contextual

entities per entity
42.5

# relations 4,668

“#” denotes “the number of”.

Figure 6a illustrates the distribution of the length of the news

life cycle, where we define the life cycle of a piece of news as the

period from its publication date to the date of its last received

click. We observe that about 90% of news are clicked within two

days, which proves that online news is extremely time-sensitive

and are substituted by newer ones with high frequency. Figure 6b

illustrates the distribution of the number of clicked pieces of news

for a user. 77.9% of users clicked no more than five pieces of news,

which demonstrates the data sparsity in the news recommendation

scenario.

Figures 6c and 6d illustrate the distributions of the number of

words (without stop words) and entities in a news title, respectively.

The average number per title is 7.9 for words and 3.7 for entities,

showing that there is one entity in almost every two words in news

titles on average. The high density of the occurrence of entities also

empirically justifies the design of KCNN.

Figures 6e and 6f present the distribution of occurrence times of

an entity in the news dataset and the distribution of the number

of contextual entities of an entity in extracted knowledge graph,

respectively. We can conclude from the two figures that the occur-

rence pattern of entities in online news is sparse and has a long

tail (80.4% of entities occur no more than ten times), but entities

generally have abundant contexts in the knowledge graph: the aver-

age number of context entities per entity is 42.5 and the maximum

is 140, 737. Therefore, contextual entities can greatly enrich the

representations for a single entity in news recommendation.

5.2 Baselines

We use the following state-of-the-art methods as baselines in our

experiments:

• LibFM [35] is a state-of-the-art feature-based factorization

model and widely used in CTR scenarios. In this paper, the

input feature of each piece of news for LibFM is comprised of

two parts: TF-IDF features and averaged entity embeddings.

We concatenate the feature of a user and candidate news to

feed into LibFM.

• KPCNN [46] attaches the contained entities to the word se-

quence of a news title and uses Kim CNN to learn representa-

tions of news, as introduced in Section 4.3.

• DSSM [16] is a deep structured semantic model for document

ranking using word hashing and multiple fully-connected lay-

ers. In this paper, the user’s clicked news is treated as the query

and the candidate news are treated as the documents.

• DeepWide [6] is a general deep model for recommendation,

combining a (wide) linear channel with a (deep) non-linear

channel. Similar to LibFM, we use the concatenated TF-IDF

1 2 3 4 5 6 7 8 9 > 9
0

0.2

0.4

0.6

0.8

# lasting days of a piece of news

Pr
op

or
tio

n 
of

 n
ew

s

(a) Distribution of the length of

news life cycle

1 2 3 4 5 6 7 8 9 1011121314    >14
0

0.1

0.2

0.3

0.4

# clicked news of a user

Pr
op

or
tio

n 
of

 u
se

rs

(b) Distribution of the number of

clicked news of a user

1 2 3 4 5 6 7 8 9 1011121314    >14
0

0.05

0.10

0.15

0.20

# words in a news title

Pr
op

or
tio

n 
of

 n
ew

s 
tit

le

(c) Distribution of the number of

words in a news title

1 2 3 4 5 6 7 8 9 >9
0

0.1

0.2

0.3

0.4

# entities in a news title

Pr
op

or
tio

n 
of

 n
ew

s 
tit

le

(d) Distribution of the number of

entities in a news title

1 2 3 4 5 6 7 8 9 1011121314    >14
0

0.1

0.2

0.3

0.4

occurrence times of an entity

Pr
op

or
tio

n 
of

 e
nt

iti
es

(e) Distribution of the occur-

rence times of an entity in the

news dataset

0 25 50 75 >100
0

0.02

0.04

0.06

0.08

# contextual entities of an entity

Pr
op

or
tio

n 
of

 e
nt

iti
es

(f) Distribution of the number of

contextual entities of an entity

in the knowledge graph

Figure 6: Illustration of statistical distributions in news

dataset and extracted knowledge graph.

features and averaged entity embeddings as input to feed both

channels.

• DeepFM [13] is also a general deep model for recommenda-

tion, which combines a component of factorization machines

and a component of deep neural networks that share the input.

We use the same input as in LibFM for DeepFM.

• YouTubeNet [8] is proposed to recommend videos from a

large-scale candidate set in YouTube using a deep candidate

generation network and a deep ranking network. In this paper,

we adapt the deep raking network to the news recommenda-

tion scenario.

• DMF [50] is a deep matrix factorization model for recom-

mender systems which uses multiple non-linear layers to pro-

cess raw rating vectors of users and items. We ignore the

content of news and take the implicit feedback as input for

DMF.

Note that except for LibFM, other baselines are all based on

deep neural networks since we aim to compare our approach with

state-of-the-art deep learning models. Additionally, except for DMF

which is based on collaborative filtering, other baselines are all

content-based or hybrid methods.
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Table 2: Comparison of different models.

Models∗ F1 AUC p-value∗∗

DKN 68.9 ± 1.5 65.9 ± 1.2 −

LibFM 61.8 ± 2.1 (-10.3%) 59.7 ± 1.8 (-9.4%) < 10−3

LibFM(-) 61.1 ± 1.9 (-11.3%) 58.9 ± 1.7 (-10.6%) < 10−3

KPCNN 67.0 ± 1.6 (-2.8%) 64.2 ± 1.4 (-2.6%) 0.098

KPCNN(-) 65.8 ± 1.4 (-4.5%) 63.1 ± 1.5 (-4.2%) 0.036

DSSM 66.7 ± 1.8 (-3.2%) 63.6 ± 2.0 (-3.5%) 0.063

DSSM(-) 66.1 ± 1.6 (-4.1%) 63.2 ± 1.8 (-4.1%) 0.045

DeepWide 66.0 ±1.2 (-4.2%) 63.3 ± 1.5 (-3.9%) 0.039

DeepWide(-) 63.7 ± 0.9 (-7.5%) 61.5 ± 1.1 (-6.7%) 0.004

DeepFM 63.8 ± 1.5 (-7.4%) 61.2 ± 2.3 (-7.1%) 0.014

DeepFM(-) 64.0 ± 1.9 (-7.1%) 61.1 ± 1.8 (-7.3%) 0.007

YouTubeNet 65.5 ± 1.2 (-4.9%) 63.0 ± 1.4 (-4.4%) 0.025

YouTubeNet(-) 65.1 ± 0.7 (-5.5%) 62.1 ± 1.3 (-5.8%) 0.011

DMF 57.2 ± 1.2 (-17.0%) 55.3 ± 1.0 (-16.1%) < 10−3

* “(-)” denotes “without input of entity embeddings”.

** p-value is the probability of no significant difference with DKN on AUC by t-test.
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Figure 7: AUC score of DKN and baselines over ten days (Sep.

01-10, 2017).

5.3 Experiment Setup

We choose TransD [18] to process the knowledge graph and learn

entity embeddings, and use the non-linear transformation function

in Eq. (15) in KCNN. The dimension of both word embeddings and

entity embeddings are set as 100. The number of filters are set as

100 for each of the window sizes 1, 2, 3, 4. We use Adam [21] to

train DKN by optimizing the log loss. We will further study the

variants of DKN and the sensitivity of key parameters in Sections

5.4 and 5.6, respectively. To compare DKN with baselines, we use

F1 and AUC value as the evaluation metrics.

The key parameter settings for baselines are as follows. For

KPCNN, the dimensions of word embeddings and entity embed-

dings are both set as 100. For DSSM, the dimension of semantic

feature is set as 100. For DeepWide, the final representations for

deep and wide components are both set as 100. For YouTubeNet,

the dimension of final layer is set as 100. For LibFM and DeepFM,

the dimensionality of the factorization machine is set as {1, 1, 0}.

For DMF, the dimension of latent representation for users and items

is set as 100. The above settings are for fair consideration. Other

parameters in the baselines are set as default. Each experiment

is repeated five times, and we report the average and maximum

deviation as results.

5.4 Results

In this subsection, we present the results of comparison of different

models and the comparison among variants of DKN.

Table 3: Comparison among DKN variants.

Variants F1 AUC

DKN with entity and context emd. 68.8 ± 1.4 65.7 ± 1.1

DKN with entity emd. only 67.2 ± 1.2 64.8 ± 1.0

DKN with context emd. only 66.5 ± 1.5 64.2 ± 1.3

DKN without entity nor context emd. 66.1 ±1.4 63.5 ± 1.1

DKN + TransE 67.6 ± 1.6 65.0 ± 1.3

DKN + TransH 67.3 ± 1.3 64.7 ± 1.2

DKN + TransR 67.9 ± 1.5 65.1 ± 1.5

DKN + TransD 68.8 ± 1.3 65.8 ± 1.4

DKN with non-linear mapping 69.0 ± 1.7 66.1 ± 1.4

DKN with linear mapping 67.1 ± 1.5 64.9 ± 1.3

DKN without mapping 66.7 ± 1.6 63.7 ± 1.6

DKN with attention 68.7 ± 1.3 65.7 ± 1.2

DKN without attention 67.0 ± 1.0 64.8 ± 0.8

5.4.1 Comparison of different models. The results of compari-

son of different models are shown in Table 2. For each baseline in

which the input contains entity embedding, we also remove the

entity embedding from input to see how its performance changes

(denoted by “(-)”). Additionally, we list the improvements of base-

lines compared with DKN in brackets and calculate the p-value

of statistical significance by t-test. Several observations stand out

from Table 2:

• The usage of entity embedding could boost the performance of

most baselines. For example, the AUC of KPCNN, DeepWide,

and YouTubeNet increases by 1.1%, 1.8% and 1.1%, respectively.

However, the improvement for DeepFM is less obvious. We

try different parameter settings for DeepFM and find that if

the AUC drops to about 0.6, the improvement brought by the

usage of knowledge could be up to 0.5%. The results show that

FM-based method cannot take advantage of entity embedding

stably in news recommendation.

• DMF performs worst among all methods. This is because

DMF is a CF-based method, but news is generally highly time-

sensitive with a short life cycle. The result proves our afore-

mentioned claim that CF methods cannot work well in the

news recommendation scenario.

• Except for DMF, other deep-learning-based baselines outper-

form LibFM by 2.0% to 5.2% on F1 and by 1.5% to 4.5% on AUC,

which suggests that deep models are effective in capturing the

non-linear relations and dependencies in news data.

• The architecture of DeepWide and YouTubeNet is similar in

the news recommendation scenario, thus we can observe com-

parable performance of the two methods. DSSM outperforms

DeepWide and YouTubeNet, the reason for which might be

that DSSM models raw texts directly with word hashing.

• KPCNN performs best in all baselines. This is because KPCNN

uses CNN to process input texts and can better extract the

specific local patterns in sentences.

• Finally, compared with KPCNN, DKN can still have a 1.7%

AUC increase. We attribute the superiority of DKN to its two

properties: 1) DKN uses word-entity-aligned KCNN for sen-

tence representation learning, which could better preserve

the relatedness between words and entities; 2) DKN uses an

attention network to treat users’ click history discriminatively,

which better captures users’ diverse reading interests.
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Table 4: Illustration of training and test logs for a randomly sampled user (training logs with label 0 are omitted).

No. Date News title Entities Label Category

tr
ai
n
in
g

1 12/25/2016 Elon Musk teases huge upgrades for Tesla’s supercharger network Elon Musk; Tesla Inc. 1 Cars

2 03/25/2017 Elon Musk offers Tesla Model 3 sneak peek Elon Musk; Tesla Model 3 1 Cars

3 12/14/2016 Google fumbles while Tesla sprints toward a driverless future Google Inc.; Tesla Inc. 1 Cars

4 12/15/2016 Trump pledges aid to Silicon Valley during tech meeting Donald Trump; Silicon Valley 1 Politics

5 03/26/2017 Donald Trump is a big reason why the GOP kept the Montana House seat Donald Trump; GOP; Montana 1 Politics

6 05/03/2017 North Korea threat: Kim could use nuclear weapons as “blackmail” North Korea; Kim Jong-un 1 Politics

7 12/22/2016 Microsoft sells out of unlocked Lumia 950 and Lumia 950 XL in the US Microsoft; Lumia; United States 1 Other

8 12/08/2017 6.5 magnitude earthquake recorded off the coast of California earthquake; California 1 Other

......

te
st

1 07/08/2017 Tesla makes its first Model 3 Tesla Inc; Tesla Model 3 1 Cars

2 08/13/2017 General Motors is ramping up its self-driving car: Ford should be nervous General Motors; Ford Inc. 1 Cars

3 06/21/2017 Jeh Johnson testifies on Russian interference in 2016 election Jeh Johnson; Russian 1 Politics

4 07/16/2017 “Game of Thrones” season 7 premiere: how you can watch Game of Thrones 0 Other

Figure 7 presents the AUC score of DKN and baselines for ad-

ditional ten test days. We can observe that the curve of DKN is

consistently above baselines over ten days, which strongly proves

the competitiveness of DKN. Moreover, the performance of DKN is

also with low variance compared with baselines, which suggests

that DKN is also robust and stable in practical application.

5.4.2 Comparison among DKN variants. Further, we compare

among the variants of DKN with respect to the following four

aspects to demonstrate the efficacy of the design of the DKN frame-

work: the usage of knowledge, the choice of knowledge graph

embedding method, the choice of transformation function, and the

usage of an attention network. The results are shown in Table 3,

from which we can conclude that:

• The usage of entity embedding and contextual embedding

can improve AUC by 1.3% and 0.7%, respectively, and we can

achieve even better performance by combining them together.

This finding confirms the efficacy of using a knowledge graph

in the DKN model.

• DKN+TransD outperforms other combinations. This is proba-

bly because, as presented in Section 2.1, TransD is the most

complicatedmodel among the four embeddingmethods, which

is able to better capture non-linear relationships among the

knowledge graph for news recommendation.

• DKN with mapping is better than DKN without mapping,

and the non-linear function is superior to the linear one. The

results prove that the transformation function can alleviate the

heterogeneity between word and entity spaces by self learning,

and the non-linear function can achieve better performance.

• The attention network brings a 1.7% gain on F1 and 0.9%

gain on AUC for the DKN model. We will give a more intuitive

demonstration on the attention network in the next subsection.

5.5 Case Study

To intuitively demonstrate the efficacy of the usage of the knowl-

edge graph as well as the the attention network, we randomly

sample a user and extract all his logs from the training set and the

test set (training logs with label 0 are omitted for simplicity). As

shown in Table 4, the clicked news clearly exhibits his points of in-

terest: No. 1-3 concern cars and No. 4-6 concern politics (categories

are not contained in the original dataset but manually tagged by us).

We use the whole training data to train DKN with full features and

DKNwithout entity nor context embedding, then feed each possible

pair of training logs and test logs of this user to the two trained

models and obtain the output value of their attention networks.

The results are visualized in Figure 8, in which the darker shade of

blue indicates larger attention values. From Figure 8a we observe

that, the first title in test logs gets high attention values with “Cars”

in the training logs since they share the same word “Tesla”, but the

results for the second title are less satisfactory, since the second

title shares no explicit word-similarity with any title in the training

set, including No. 1-3. The case is similar for the third title in test

logs. In contrast, in Figure 8b we see that the attention network

precisely captures the relatedness within the two categories “Cars”

and “Politics”. This is because in the knowledge graph, “General

Motors” and “Ford Inc.” share a large amount of context with “Tesla

Inc.” and “Elon Musk”, moreover, “Jeh Johnson” and “Russian” are

also highly connected to “Donald Trump”. The difference in the

response of the attention network also affects the final predicted

results: DKN with knowledge graph (Figure 8b) accurately predicts

all the test logs, while DKN without knowledge graph (Figure 8a)

fails on the third one.

5.6 Parameter Sensitivity

DKN involves a number of hyper-parameters. In this subsection,

we examine how different choices of hyper-parameters affect the

performance of DKN. In the following experiments, expect for the

parameter being tested, all other parameters are set as introduced

in Section 5.3.

5.6.1 Dimension of word embedding d and dimension of entity

embedding k . We first investigate how the dimension of word em-

bedding d and dimension of entity embedding k affect performance

by testing all combinations of d and k in set {20, 50, 100, 200}. The

results are shown in Figure 9a, from which we can observe that,

given dimension of entity embedding k , performance initially im-

proves with the increase of dimension of word embedding d . This
is because more bits in word embedding can encode more useful

information of word semantics. However, the performance drops

when d further increases, as a too large d (e.g., d = 200) may intro-

duce noises which mislead the subsequent prediction. The case is

similar for k when d is given.
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Figure 8: Attention visualization for training logs and test

logs for a randomly sampled user.

5.6.2 Window sizes of filters and the number of filters m. We

further investigate the choice of windows sizes of filters and the

number of filters for KCNN in the DKN model. As shown in Figure

9b, given windows sizes, the AUC score generally increases as the

number of filtersm gets larger, since more filters are able to capture

more local patterns in input sentences and enhancemodel capability.

However, the trend changes when m is too large (m = 200) due

to probable overfitting. Likewise, we can observe similar rules for

window sizes givenm: a small window size cannot capture long-

distance patterns in sentences, while a too large window size may

easily suffer from overfitting the noisy patterns.

6 RELATEDWORK

6.1 News Recommendation

News recommendation has previously been widely studied. Non-

personalized news recommendation aims to model relatedness

among news [29] or learn human editors’ demonstration [47]. In

personalized news recommendation, CF-based methods [41] often

suffer from the cold-start problem since news items are substituted

frequently. Therefore, a large amount of content-based or hybrid

methods have been proposed [2, 22, 27, 34, 39]. For example, [34]

proposes a Bayesian method for predicting users’ current news

interests based on their click behavior, and [39] proposes an ex-

plicit localized sentiment analysis method for location-based news

recommendation. Recently, researchers have also tried to combine

other features into news recommendation, for example, contextual-

bandit [25], topic models [28], and recurrent neural networks [32].

The major difference between prior work and ours is that we use

a knowledge graph to extract latent knowledge-level connections

among news for better exploration in news recommendation.

6.2 Knowledge Graph

Knowledge graph representation aims to learn a low-dimensional

vector for each entity and relation in the knowledge graph, while

preserving the original graph structure. In addition to translation-

based methods [4, 18, 26, 48] used in DKN, researchers have also

proposed many other models such as Structured Embedding [5], La-

tent Factor Model [17], Neural Tensor Network [37] and GraphGAN

[42]. Recently, the knowledge graph has also been used in many

applications, such as movie recommendation[52], top-N recom-

mendation [33], machine reading[51], text classification[46] word
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Figure 9: Parameter sensitivity of DKN.

embedding[49], and question answering [10]. To the best of our

knowledge, this paper is the first work that proposes leveraging

knowledge graph embedding in news recommendation.

6.3 Deep Recommender Systems

Recently, deep learning has been revolutionizing recommender

systems and achieves better performance in many recommenda-

tion scenarios. Roughly speaking, deep recommender systems can

be classified into two categories: using deep neural networks to

process the raw features of users or items, or using deep neural

networks to model the interaction among users and items. In addi-

tion to the aforementioned DSSM [16], DeepWide [6], DeepFM [13],

YouTubeNet [8] and DMF [50], other popular deep-learning-based

recommender systems include Collaborative Deep Learning [44],

SHINE [45], Multi-view Deep Learning [11], and Neural Collabora-

tive Filtering [14]. The major difference between these methods and

ours is that DKN specializes in news recommendation and could

achieve better performance than other generic deep recommender

systems.

7 CONCLUSIONS

In this paper, we propose DKN, a deep knowledge-aware network

that takes advantage of knowledge graph representation in news

recommendation. DKN addresses three major challenges in news

recommendation: 1) Different from ID-based methods such as col-

laborative filtering, DKN is a content-based deep model for click-

through rate prediction that are suitable for highly time-sensitive

news. 2) To make use of knowledge entities and common sense

in news content, we design a KCNN module in DKN to jointly

learn from semantic-level and knowledge-level representations of

news. The multiple channels and alignment of words and entities

enable KCNN to combine information from heterogeneous sources

and maintain the correspondence of different embeddings for each

word. 3) To model the different impacts of a user’s diverse historical

interests on current candidate news, DKN uses an attention module

to dynamically calculate a user’s aggregated historical represen-

tation. We conduct extensive experiments on a dataset from Bing

News. The results demonstrate the significant superiority of DKN

compared with strong baselines, as well as the efficacy of the usage

of knowledge entity embedding and the attention module.
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