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Table 9: The triples that learn similar truth vectors to (coronary heart disease, chest pain) with different embeddings.
Only Entity Embeddings Only Co-occurrence Embeddings Combine Two Kinds of Embeddings

Similar Triple Distance Similar Triple Distance Similar Triple Distance

(heart disease, chest pain) 0.9872 (heart disease, chest pain) 0.6546 (heart disease, chest pain) 0.9444
(myocardial infarction, chest pain) 1.0204 (cardio-cerebrovascular disease, chest pain) 0.7095 (cardio-cerebrovascular disease, chest pain) 1.0933

(coronary heart disease, left chest pain) 1.2282 (cardiovascular disease, coronary insufficiency) 0.7275 (coronary heart disease, dorsal distending pain) 1.2294
(coronary heart disease, chest distress) 1.2822 (myocardial infarction, filling defect) 0.7504 (heart disease, limited activity) 1.2520

(heart failure, chest pain) 1.4299 (coronary heart disease, shoulder pain) 0.8885 (myocardial infarction, filling defect) 1.2703

7 CONCLUSIONS
In this paper, we present a medical knowledge condition discovery
method to enrich medical knowledge graph with condition informa-
tion. Due to the limited amount of available EMR data, we leverage
medical QA data from online crowdsourcing medical communities
to overcome the lack of data. However, unlike EMR data, the quality
of QA data is diverse, as the answers are provided by website users
with different professional levels, which may introduce a lot of
noise and degrade the quality of discovered conditions. To tackle
these challenges, we propose a novel truth discovery method for
the task of medical knowledge condition discovery. The proposed
method can recognize the EMR data as priorly known high-quality
reference sources to semi-supervise the overall process of medical
knowledge condition discovery in multi-source medical data. Be-
sides, the proposed method incorporates the occurrence and entity
information of knowledge triples to capture the interaction between
knowledge triples when computing the truth for knowledge triples.
Experimental results on real-world medical datasets show that the
proposed method can effectively discover accurate medical knowl-
edge condition information from multi-source data with diverse
quality. We also validate the effectiveness of the proposed method
under various scenarios on synthetic datasets.
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