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Emotion Cause Extraction Fy P R
RB 0.5243  0.6747 0.4287
MULTI-KERNEL 0.6752 0.6588 0.6927
CONVMS-MEMNET 0.6955 0.7076  0.6838
CANN 0.7266 0.7721 0.6891
RTHN 0.7677 0.7697 0.7662

Cause Clause Extraction F P R
CANN -E 0.3797 0.4826 0.3160
RTHN-APE 0.5694 0.5800 0.5618
INTER-EC 0.6507 0.7041 0.6083
RANKCP 0.6824 0.6927 0.6743

Table 4: Results on emotion cause extraction task.
CANN - E and RTHN-APE denote the variant mod-
els of CANN and RTHN respectively, which do not
utilize known emotion clauses as model input.

Loss Function Fi P R

Lpair 0.6241 0.6412  0.6090
Lpair + (Lemo + Leau)  0.6610  0.6698  0.6546

Table 5: Comparison of different supervised signals for
RANKCP.

that our proposed RANKCP performs much better
than other methods. Besides, although RANKCP
does not utilize known emotions of test docu-
ments as model input, it still outperforms RB and
MULTI-KERNEL, and is comparable to CONVMS-
MEMNET. Thus, our approach benefits from inter-
clause modeling and shows its effectiveness on
cause clause extraction.

4.3 Further Discussions

We conduct ablation studies to analyze the effects
of different components in our approach.

Effect of Two-level Supervision

Our model is trained with a mixture of two super-
vised signals: a low-level signal Lepno + Leay ON
clause representation learning at the output of graph
attention network (see Eq. 5), and a high-level sig-
nal Lp.ir on clause pair representation learning and
ranking (see Eq. 10). To verify the effect of low-
level supervision, we train our model with Lpair
only, and the results compared with those of our
full model are given in Table 5. It shows that train-
ing with two-level supervision boosts the extraction
performance. This indicates that incorporating a
low-level supervision helps learn better clause rep-
resentations, and eventually facilitates the clause
pair representation learning and ranking process.
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Figure 3: Results of RANKCP with various graph at-
tention layers.
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Figure 4: Comparative results of our variant model
that removes the clause pair representation learning and
ranking component (denoted as “RANKCP w/o Rank™)
and our full model RANKCP.

Effect of Graph Attention Layers

Graph attention network for modeling inter-clause
latent relationships is the key component of our
approach. We vary the number of graph attention
layers (ranging from O to 3) to test its effect, and
the results on emotion-cause pair extraction and
cause clause extraction are shown in Fig. 3.
Obviously, the model without graph attention
layer can not obtain good performance. Our ap-
proach achieves the best performance with two-
layer graph attention network, indicating that inter-
clause relationships can be modeled sufficiently
without stacking a lot of layers in this task.

Effect of Clause Pair Representation Learning

We further investigate if we can obtain ideal perfor-
mance by directly using clause representations to
predict emotion clauses and cause clauses. In other
words, we remove the clause pair representation
learning and ranking component, and utilize the
graph attention network’s predictions (i.e., Eq. 5)
to produce emotion-cause pairs. After predicting
emotion clauses and cause clauses in a document,
we consider all combinations of the predicted emo-
tions and causes as the extracted emotion-cause
pairs, and the comparative results of this variant
model and our full model are shown in Fig. 4.
RANKCP performs much better than the vari-
ant one (especially on Recall), demonstrating that
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Relative Position Scheme F P R

No (top-1 ext.) 0.6267 0.6600 0.5973
No (lexicon-based ext.)  0.6260 0.6378 0.6160
Vanilla (top-1 ext.) 0.6468 0.6810 0.6164
Vanilla (Iexicon-based ext.) 0.6582 0.6669 0.6510
Kernel (top-1 ext.) 0.6562  0.6910 0.6254
Kernel (lexicon-based ext.) 0.6610 0.6698 0.6546

Table 6: Comparison on relative position embedding
schemes. “ext.” is the abbreviation for “extraction”.

only offering clause-level predictions is not suit-
able for emotion-cause pair extraction task. Thus,
combining clause-level and clause pair representa-
tion learning in a unified one-step model is indeed
effective for extracting emotion-cause pairs.

Effect of Relative Position Embedding

We remove the relative position embedding part
in RANKCP to verify its effect. We also compare
vanilla and kernel-based relative position embed-
ding schemes. The results are given in Table 6.
Removing relative position embedding results
in performance degradation, indicating that rela-
tive position between a clause pair is indeed useful
for prediction. Another observation from the first
two lines is that lexicon-based extraction can not
outperform top-1 extraction, which further verifies
that the model without relative position embedding
can not offer ideal ranking list. Kernel-based em-
bedding achieves better performance than vanilla
one on both top-1 and lexicon-based extractions,
thus considering the mutual impact among rela-
tive positions helps obtain more powerful clause
pair representations and further improves the per-
formance of emotion-cause pair extraction.

4.4 Case Analysis

We illustrate a document that our approach
RANKCP correctly extracts its emotion-cause pair
(c5,c4) while INTER-EC fails:

AA118 (c1)> KT MAEMELER LALLM
st (cg), HH — AR F K (c3) wREE
6 AT T A B B KM (cy)> AR
TART R (c5), WRZETF (c6) -

Translation: On April 11th (c1), a netizen posted
her complains on the Internet (cz), she has a wacko
boyfriend (c3), he never goes to a restaurant with-
out discounts (c4), this makes her feel bad (cs), and
very embarrassed (cg).

We visualize the attention weights for two
clauses c4 and c5 in Fig. 5. The emotion clause cs
attends the corresponding cause c4 with the highest
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Figure 5: Attention weights for two clauses ¢4 and cs.

weight, indicating that graph attention effectively
captures the relationship between the two clauses.

5 Related Work

Emotion Cause Extraction Lee et al. (2010a,b)
first studied emotion cause extraction and designed
a linguistic rule-based system to detect cause
events. Early work attempted rule-based (Chen
et al., 2010; Neviarouskaya and Aono, 2013;
Gao et al., 2015), commonsense-based (Russo
et al.,, 2011), and traditional machine learning
based (Ghazi et al., 2015) approaches to extract
causes for certain emotion expressions.

Gui et al. (2016) proposed an event-driven multi-
kernel SVM method and released a benchmark cor-
pus. Both feature based (Xu et al., 2019) and neural
approaches (Gui et al., 2017; Li et al., 2018; Ding
et al., 2019; Yu et al., 2019) have been proposed
recently. Xia et al. (2019) adopted Transformer
encoder augmented with position information and
integrated global prediction embedding to improve
performance. Fan et al. (2019) incorporated senti-
ment and position regularizers to restrain parameter
learning. Hu et al. (2019) exploited external senti-
ment classification corpus to pretrain the model.

In other research lines, some work (Cheng et al.,
2017) extracted emotion causes in the context of
microblog with multi-user structure. Besides, Kim
and Klinger (2018) and Bostan et al. (2020) ad-
dressed emotions as structured phenomena, and
studied the semantic roles of emotions including
trigger phrases, experiencers, targets and causes, as
well as the reader’s perception.

Emotion-Cause Pair Extraction All previ-
ous studies on emotion cause analysis need to take
known emotion clauses as model input. The pio-
neer work (Xia and Ding, 2019) first put forward
emotion-cause pair extraction task. They proposed
a two-step approach to extract emotion and cause
clauses separately, and then train a classifier to fil-
ter out negative pairs. Unlike their work, our work
is a one-step solution for end-to-end emotion-cause
pair extraction via effective inter-clause modeling,
achieving significantly better performance.

3178



6 Conclusion and Future Work

In this paper, we propose the first one-step neu-
ral approach RANKCP to tackle the problem of
emotion-cause pair extraction, which emphasizes
inter-clause modeling from a ranking perspective.
Our approach effectively models inter-clause rela-
tionships to learn clause representations, and inte-
grates relative position enhanced clause pair rank-
ing into a unified neural network to extract emotion-
cause pairs in an end-to-end fashion. Experimental
results on the benchmark dataset demonstrate that
RANKCP significantly outperforms previous sys-
tems, and further analysis verifies the effectiveness
of each component in our model.

In future work, we shall explore the following
directions. First, current studies on emotion cause
analysis mainly focus on clause-level extraction
which is relatively coarse-grained, and it is desir-
able to further design fine-grained methods that
can extract span-level or phrase-level emotion ex-
pressions and causes. Second, designing effective
methods to inject appropriate linguistic knowledge
into neural models is valuable to emotion analysis
tasks (Ke et al., 2019; Zhong et al., 2019). Finally,
it would be interesting to study the semantic roles
of emotion (Bostan et al., 2020), which considers
the full structure of an emotion expression and is
more challenging.
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A Experimental Results with BERT

We employ pretrained BERT (Devlin et al., 2019)
to replace the original encoder (Hierarchical RNN)
in RANKCP, and report the experimental results.

A.1 RANKCP with BERT Encoder

Given a document D = (cl, €2, .- a?lD\)
where the i-th clause ¢; = (w}, w5, ... ’wllcz'|>’
to feed D into pretrained BERT, for each
clause we insert a [CLS] token before it
and append a [SEP] token to it, obtaining
c; = ([CLST,wt,wh, ... ,wfci , [SEP]). Follow-
ing (Liu and Lapata, 2019), we use “interval” seg-
ment embeddings (E4, Ep, E4, . . .) to distinguish
clauses in a document, i.e., F/4 for clauses at odd
positions and E'p for those at even positions. For
each token in the document, its input representation
is the sum of the corresponding token, segment, and
position embeddings. The clause representation of
clause ¢; is the corresponding [CLS] token’s out-
put representation.

We implement our model based on PyTorch
and Transformers,® and the BERT encoder
is initialized using BERT-Base, Chinese.’
The model is optimized by Eq. 13 for 20
epochs with early stopping, using AdamW op-
timizer (Loshchilov and Hutter, 2019) and 1e-5
learning rate. We schedule the learning rate that
the first 10% of all training steps is a linear warm-
up phrase and then a linear decay phrase is used.

A.2 Results

Table 7 shows the results on emotion-cause pair ex-
traction and two sub-tasks. With the pretrained
BERT encoder, the results of RANKCP signifi-
cantly perform better than those with hierarchical
RNN, especially on Recall, which indicates the
effectiveness of contextualized embeddings as ex-
ternal knowledge, and thus pretrained BERT is a
suitable backbone network for emotion-cause pair
extraction task.

Table 8 shows the comparative results on extract-
ing one and more than one pair, and we can observe
that pretrained BERT encoder further improves the
performance of RANKCP for extracting multiple
pairs in one document.

®https://github.com/huggingface/
transformers

"https://github.com/google-research/
bert
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Emotion-Cause Pair Extraction

Emotion Clause Extraction

Cause Clause Extraction

Approach
F P R F P R Fy P R
RANKCP 0.6610 0.6698 0.6546 0.8548  0.8703  0.8406 0.6824 0.6927 0.6743
RANKCP w/ BERT  0.7360 0.7119 0.7630 09057 09123  0.8999 0.7615 0.7461 0.7788

Table 7: Experimental results with pretrained BERT encoder.

# Pairs Approach Fy P R
One per d RANKCP  0.6790 0.6625 0.6966

eperdoc. W/BERT 07633 0.7203 0.8123
Two ormore  RANKCP  0.5531 0.7508 0.4390

per doc. w/ BERT  0.5802 0.6772 0.5146

Table 8: Comparative results for documents with only
one and more than one emotion-cause pair.

B More Discussions on Modeling
Inter-Clause Relationships

B.1 Multi-Root Discourse Tree Induction

In previous experiments, we let RANKCP induce
a discourse dependency tree (each discourse unit
is a clause) while extracting emotion-cause pairs
in a document. We expect that a document can be
structurally represented as a multi-root dependency
tree, where each root node is an emotion clause,
and its child nodes plus the root itself are potential
causes. To this end, we extended the original graph
attention to a structured graph attention mecha-
nism, inspired by (Koo et al., 2007; Liu and Lapata,
2018). See the next sub-section for details.

However, the structured graph attention does not
lead to improvement for RANKCP. The main rea-
son might be that dependencies in a discourse tree
cannot handle a common situation well, i.e., an
emotion clause and its corresponding cause clause
is the same one. We leave the exploration of effec-
tive tree induction methods with the help of clause
pair representation learning for future work.

B.2 Structured Graph Attention

At the t-th layer, let {hgtil), hg&*l), e ,hl(El)}
denote the input clause representations. The struc-
tured graph attention mechanism operates on each

clause c; via the following aggregation scheme:

P =aPeror + > PRV,
JEN ()
t t t—1
¢! = > adh Y, (15)
JEN(D)
h{" = ReLU (Wg(t) [pgt); c@; hEtil)} + b§t>> )

7

where pgt) and cl(.t) are the context information ag-

gregated from parent clauses and child clauses re-

spectively. az(;) reflects the marginal probability

of a dependency between two clauses ¢; and c;.

agt) denotes the probability of ¢; being a root, and

€root 18 a special root embedding. Specifically, two
(®) (t).

MLPs compute unnormalized values e;;” and e; "

.
e =wl " tanh ([WOR!D;WORIV])

(16)
e = w® " tanh (W“)hg“”) ,

Then, the normalized weights o'V and ¥

i ;/ can be
regarded as constrained attention weights to induce
a non-projective discourse dependency tree based
on Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984,
Koo et al., 2007), where A®) and L) denote ad-

jacency matrix and Laplacian matrix respectively:

PICI iti=7,
(A = exp(LeakyReLU(el(;)))7 otherwise .

rgt) = exp(egﬂ) ,

a7

DI T A®], . ifi =
L), = k=1 Jej ifi=7, 18
L0 —[AD],;, otherwise . (18
LY =LY 4 diag(r”, ..., r(p)) (19)

The normalized weights are:

(Ot
1is

o) = (1-6:,)[AV)4(E

o —1
— (1= 6,1)[A0), 2"

=1
ol = rMEY T,

(20)

lji s

where § is Kronecker delta and - ! denotes matrix
inversion. Eq. 19 is suitable for multi-root setting.
In the case of single-root setting, it is replaced by:

) o
- - fi=1

L(t) ii = { T_] 1 b 21
L) [L®];;, otherwise. @b

During training, a cross-entropy loss is used to each
layer’s root probability agt), similar to §;™°.
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