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ABSTRACT
We study the problem of recommending relevant products to users
in relatively resource-scarce markets by leveraging data from simi-
lar, richer in resource auxiliary markets. We hypothesize that data
from one market can be used to improve performance in another.
Only a few studies have been conducted in this area, partly due
to the lack of publicly available experimental data. To this end,
we collect and release XMarket, a large dataset covering 18 local
markets on 16 di�erent product categories, featuring 52.5 million
user-item interactions.

We introduce and formalize the problem of cross-market prod-
uct recommendation, i.e., market adaptation. We explore di�erent
market-adaptation techniques inspired by state-of-the-art domain-
adaptation and meta-learning approaches and propose a novel neu-
ral approach for market adaptation, named FOREC. Our model fol-
lows a three-step procedure – pre-training, forking, and �ne-tuning
– in order to fully utilize the data from an auxiliary market as well
as the target market. We conduct extensive experiments studying
the impact of market adaptation on di�erent pairs of markets. Our
proposed approach demonstrates robust e�ectiveness, consistently
improving the performance on target markets compared to com-
petitive baselines selected for our analysis. In particular, FOREC
improves on average 24% and up to 50% in terms of nDCG@10,
compared to the NMF baseline. Our analysis and experiments sug-
gest speci�c future directions in this research area. We release our
data and code1 for academic purposes.

CCS CONCEPTS
• Information systems ! Recommender systems; Collabora-
tive search; • Computing methodologies! Transfer learning.

KEYWORDS
Product Recommendation, Meta-Learning, Domain Adaptation,
Market Adaptation, Cross-Market Recommendation

1Data and code: https://xmrec.github.io
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1 INTRODUCTION
Nowadays online shopping in many countries is a part of peo-
ple’s daily lives. While online shopping brings several bene�ts and
comfort to both users and vendors [23], it comes at the risk of
overwhelming users with virtually unlimited options to choose
from. Recommender systems are key in dealing with information
overload, helping not only users �nding interesting items, but also
vendors �nding the right customer for their products. E-commerce
companies often operate across markets; for instance Amazon2
has expanded their operations and sales to 18 markets around the
globe.3 This brings both opportunities and challenges.

While it is typical that several local e-commerce companies oper-
ate in every country, the presence of an international e-commerce
company, like Amazon, eBay, and Etsy can bene�t users even more
if these companies can utilize the experience and data gathered
across several markets. Using cross-market data however comes
at a risk of assuming one-solution-�ts-all and applying the same
algorithms that are developed for and trained on large and data-rich
markets, such as the U.S. [22], to small and data-scarce markets.
The key challenge is that data, such as user interaction data with
products (clicks, purchases, reviews), convey certain biases of the
individual markets [7]. Algorithms that are optimized for a certain
market learn various biases and distributions of the data [47]. There-
fore, the algorithm trained on a source market, are not necessarily
e�ective in a di�erent target market [13], since utilizing the vast
amount of data from a large market to improve the performance
on low-resource markets comes at the risk of importing the wrong
data distributions. For example, assume iPhone is the most popular
smartphone in the U.S. (source market), while Samsung is the most
popular smartphone brand in Germany (target market). Importing
user preference from the U.S. market would yield to recommending
iPhone in Germany more often than Samsung, which clearly is a
wrong choice. Hence, even though there is a myriad of information
to learn from a source market, careful adaptation of data is required.

The signi�cance of Cross-Market Recommendation (CMR) has
been pointed out in the literature [46]. However, small progress
has been made in this area, mainly due to a lack of experimental

2https://www.amazon.com
3https://sell.amazon.com/global-selling.html
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data. To this end, we construct a large-scale real-life product recom-
mendation dataset, referred to as XMarket, drawn from 18 markets
in 11 languages. To develop this dataset we crawled Amazon mar-
ketplaces around the globe, locating and including in the dataset
the same products within di�erent markets. Moreover, we analyze
certain statistical properties and trends amongst multiple markets
and product categories where we highlight the existence of crucial
di�erences across di�erent markets.

In this paper, we focus on the user-item interaction data through
ratings and study the problem of recommending relevant prod-
ucts to users in relatively resource-scarce markets by leveraging
data from similar, richer in resource auxiliary markets. Our hy-
pothesis is that data from one market can be used to improve
performance in another. For this purpose, we �rst introduce and
formalize the problem of cross-market product recommendation,
i.e., market adaptation. In order to solve the problem of CMR, we
explore market-adaptation baselines inspired by domain-adaptation
and meta-learning approaches. Then, we propose a novel neural
approach, named FOREC, consisted of a three-step procedure – pre-
training, forking, and �ne-tuning – in order to fully utilize the data
from an auxiliary market to boost the product recommendation
performance in the target market. More speci�cally, FOREC learns a
general recommendation system based on two markets (i.e., source
and target) and employs a forking procedure by adding a market
speci�c sub-network to the head of the model and freezing the bot-
tom part in order to adapt the general internal representations to
the target market. We conduct extensive experiments studying the
impact of market adaptation on di�erent pairs of markets. FOREC
demonstrates robust e�ectiveness, consistently improving the per-
formance compared to competitive baselines on 7 target markets
we selected for our study. In particular, FOREC improves on average
24% and up to 50% in terms of nDCG@10, compared to the NMF
baseline. Our analysis and experiments provide many insights on
the CMR and suggest speci�c future directions in this research area.
In summary, the main contributions of this paper constitute:

• Collecting a real-world pragmatic large-scale cross-market and
cross-lingual product review dataset.

• Performing analysis of cross-market behavioral biases pivoting
on the fact that our dataset includes the same items shared across
di�erent markets. In particular, we study how di�erently users
in di�erent markets interact with the same products.

• Proposing a novel neural architecture for market-adaptation and
demonstrating the e�ectiveness of the model through exten-
sive experiments. We adapt various Cross-Domain Recommen-
dation (CDR) and meta-learning approaches for Cross-Market
Recommendation (CMR).

• Analyzing the performance of the model, considering various
setups and conditions to provide further insights.

2 RELATEDWORK
This study is related to CMR and CDR, as well as meta-learning
approaches. In this section, we brie�y review the research done in
these domains.
Cross-domain and cross-market recommendation. Research
on CMR and CDR aims at improving the system’s e�ectiveness
based on the external data that is available from other markets or

item categories. While having the same goal, the two tasks di�er in
various aspects, each bearing their own challenges. Particularly, in
CDR the general assumption is that the model learns from interac-
tions of overlapping users 4 in di�erent domains (e.g. categories in
product search) with the aim of improving the recommendation on
the target domain items, using help from the source domain items.
For CMR the situation is reversed: interactions of di�erent set of
users in the source market are leveraged to boost the recommenda-
tion for users in the target market. Here, we assume that the items
are shared among di�erent markets.

Im and Hars [22] conduct an experiment in two product domains,
aiming to answer the question “does a one-size recommendation
�t all?” where they observed that the performance of Collaborative
Filtering (CF) is highly a�ected by the information-seeking mode of
the users. Depending on the product domain, users adopt di�erent
strategies and therefore the system would not �t to all domains.
Lu et al. [37] later argue that transferring all the knowledge from
source domain into the target domain may harm the recommender
due to some inconsistencies and propose a criterion for selecting the
consistent part of knowledge to be transferred to the target domain.
Elkahky et al. [12] apply domain adaptation using user behavior-
based features for learning latent space. Rafailidis and Crestani [43]
propose a collaborative ranking model with a weighting strategy
that controls the in�uence of user preferences from auxiliary do-
mains. Zhao et al. [55] use reviews to transfer user preference at
aspect-level as a cross-domain recommendation framework. Krish-
nan et al. [31] propose using contextual invariances across domains
to leverage data from a dense domain to improve learned repre-
sentations in other sparse domains. Di�erent from these works,
in this paper we investigate the existence of di�erent behavioral
biases across di�erent markets where unlike CDR, the items are
the same across di�erent markets but the users are di�erent. Fur-
ther research has aimed at mitigating these biases and transferring
knowledge from one domain to another [20, 33]. Unsupervised
domain adaptation [16] has also inspired various cross-domain rec-
ommender systems in recent years [26, 34, 50, 53]. CDR has been
used speci�cally for mitigating the cold-start problem in a number
of studies [15, 24, 25, 27, 40, 52, 55].

While there exists much work on domain adaptation, market-
adaptation is relatively unstudied. CMR has attracted attention in
music recommendation [13, 46] where Ferwerda et al. [13] ana-
lyze and study music diversity across countries and propose to
use country-based diversity measurements for system evaluation.
Roitero et al. [46] studied user behavior in 21 di�erent markets on
Spotify and highlight the need for market-speci�c algorithms, as
opposed to a global algorithm. We take one step further in this
direction by expanding our study to various item categories in
e-commerce where users purchase items (rather than having a
monthly subscription) and express their opinion and experience
with item in the form of ratings and reviews.
Meta-learning. The goal of meta-learning is to train a model on
multiple tasks, such that it can rapidly adapt to a new task after see-
ing a small number of new training samples [49]. In the context of
recommendation systems, meta-learning has been used for several
problems, including but not limitted to recommender algorithm

4with a few exceptions like [31, 42] that assume non-overlapping users
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Table 1: General statistics of XMarket.

# markets 18
# languages 11
# categories 16
# items 3,811,438
# users 9,562,260
# reviews 52,480,184
# reviewed items 1,000,829
# unique items 294,739

selection [10, 11, 38], cold-start problem [32, 48], and retraining the
model [54]. For meta-learning of deep neural networks, a general
and powerful technique, Model-Agnostic Meta-Learning (MAML),
has been proposed that can be directly applied to any learning prob-
lem andmodel [14]. MAML framework is widely used in recommen-
dation literature. For example, Lu et al. [36] use it on heterogeneous
information networks to address the cold-start problem. Others
used MAML to train a recommender which performs reasonably
good enough both for cold- and warm-start users [5, 32].

Enabling the system to use beyond ratings across markets (such
as text and image) is also interesting. Including textual data require
cross-lingual information retrieval techniques [1, 6, 21]. In future,
we plan to expand our study on these directions.

3 DATA COLLECTION & ANALYSIS
In this section, we �rst describe in detail the data collection process
and provide statistics for the collected data. Then, we analyze the
data and highlight important characteristics and similarities across
di�erent markets.

3.1 Data Collection
We describe our new dataset, called XMarket, and provide details
on how we generated it. We constructed the XMarket item and
review collection on top of a large-scale publicly-available Amazon
dataset [18, 39]5. The Amazon Product data [39] includes millions
of item reviews collected from the Amazon U.S. marketplace in var-
ious categories. The dataset was collected in 2014 and later updated
in 2018 [41]. We used this dataset as a seed to initiate our crawl.
We located the same items that appear on the U.S. market in other
markets, by matching the items’ unique identi�ers (aka. ASIN’s)
on all available Amazon markets. In particular we have crawled
data from the following markets: Saudi Arabia (sa), Singapore (sg),
Australia (au), United Arab Emirates (ae), Turkey (tr), Japan (jp),
India (in), Spain (es), U.S. (us), China (cn), Germany (de), Nether-
lands (nl), France (fr), Brazil (br), Canada (ca), Mexico (mx), Italy
(it), United Kingdom (uk). Our main criterion for including an item
in the collection process was its popularity on the us market. Our
decision was motivated by the idea of having a high-resource mar-
ket (i.e., us) that would provide a wealth of data to other markets.
Therefore, we discarded all items with less than 20 reviews in the
past two years, as we did not consider them rich enough to be useful
in other markets. In our preliminary analysis, we noticed that in
most cases, if an item exists in another market its ASIN is the same.
Therefore, we fed our crawler with the ASIN’s that we collected

5https://jmcauley.ucsd.edu/data/amazon/

Table 2: Statistics of di�erent markets for Electronics.

us de jp in fr ca mx uk

U 2.7m 345k 117k 208k 230k 422k 100k 545k
I 35k 8k 4k 7k 6k 19k 9k 10k
R 4.1m 0.5m 174k 257k 392k 721k 169k 865k

from the U.S. market. In doing so, we collected cross-market meta-
data information for over one million items and collected about 52
million multilingual reviews.

Among the existing multi-lingual review datasets, we �nd the
Multilingual Amazon Reviews Corpus (MARC) [29] themost similar
to XMarket. MARC consists of multi-lingual reviews extracted
from di�erent Amazon marketplaces, however, the scale of the
dataset is much smaller. In particular, they do not cover all Amazon
marketplaces and categories, whereas XMarket covers a wide range
of categories in all 18 Amazon marketplaces. Moreover, XMarket
includes rich item and review metadata (e.g., reviewer ID, item
description, and related items) that can be utilized to pursue various
research directions. We also found another similar dataset named
as Amazon Customer Reviews Dataset6 providing a collection of
reviews from �ve marketplaces dated from 1995 to 2015. We notice
that a vast majority of the provided data is only from United States
and the provided meta-data is limited to only product title and
reviews whereas our data covers more number of marketplaces
with a full meta-data information (including product text, images,
also bought, similar items). In addition, our product reviews are
more recent. To the best of our knowledge, no other cross-market
multi-lingual recommendation dataset with such a wide coverage
of markets and categories exists in the community.

3.2 Data Statistics
Table 1 summarizes some of the main characteristics of XMarket.
It provides a cross-lingual e-commerce dataset of 16 shopping cat-
egories in 11 languages. We crawled data for ⇠300K unique items
across all markets, which resulted in ⇠4M cross-market items. Also,
Fig. 1a shows the distribution of items in each market. We see that
the Canadian (ca) and Mexican (mx) markets have the most items
in common with the U.S. market (us), which is expected due to
the long-lasting presence of Amazon in these countries and their
vicinity to us. Due to space considerations and similarity in results,
in the remainder of the paper we analyze and discuss a subset of
markets and categories. Our experiments and model evaluations
are based on the Electronics category with statistics presented in
Table 2. We see in the table the main characteristics of the studied
marketplaces in terms of recommendation data, such as number of
items, users, and ratings. We observe a relatively high number of
users as well as items in the U.S. market, making it the most sparse
market in our dataset.

3.3 Cross-Market Analysis
Having in mind that the markets share the same set of products, we
analyze how people in di�erent regions interact with these items
to uncover behavioral characteristics (similarities and di�erences)
and biases.

6https://s3.amazonaws.com/amazon-reviews-pds/readme.html
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(a) Distribution of items per market. (b) Purchase Count (c) Rating Stars

Figure 1: Distribution of items, purchase count, and rating stars, per category and per market.

(a) Electronics (b) Home & Kitchen

Figure 2: Market similarity based on the cosine distance.

Distribution of ratings. Several reasons may in�uence users to
purchase a product such as users’ �nancial status, culture, and
companies’ marketing strategies. Therefore, we study the di�erence
in product rating (as a signal of product purchase) among di�erent
markets. We plot the distribution of product “purchase” in Fig. 1b.
The dominance of us is obvious in this �gure, with the highest
median in all categories. We see that di�erent markets exhibit
di�erent distributions across categories. In general we see that
Electronics is most popular category among di�erent markets. We
also observe that the Home & Kitchen category shows a di�erent
trend compared to other categories, perhaps because such items
are more regionally dependent.
Distribution of rating starts. We are interested in �nding out if
the same items are rated di�erently in each market. Also, if the
di�erences happen across categories. We �nd signi�cantly di�erent
behavior in giving rating stars among markets and categories, as
shown in Figure 1c. We see a greater tendency of giving higher
rating to items in mx market, whereas for in market, we see an
opposite behavior. Interestingly, we observe a relatively similar
trend in all categories where for example the median rating in de
market is always higher than that of us and fr market, but slightly
lower than the uk market. This clearly shows a general bias in
user rating behavior, which should be taken into account when
developing algorithms such as rating prediction.
Market similarity. Based on the observations that we had from
Figure 1, we estimate the users’ purchase similarity between mar-
kets. For a pair of markets in the same category, we build item
purchase count vectors and compute cosine similarity between the
two vectors. In Figure 2 we plot the similarities of all market pairs

for two categories. Interestingly, we observe the highest rate of
similarity between de, fr, and uk, highlighting the similarities in
European markets. On the other hand, we see that the American
countries do not share much in common. As we see us, ca, mx
exhibit low similarity, which is surprising. Perhaps this is due to
strong existence of local vendors in this category. In particular, we
see the lowest similarity between de and mx.
Remarks.Overall, from our analyses it is evident that users in each
market exhibit di�erent behavior. These di�erences could be due
to various reasons such as cultural biases or di�erent marketing
strategies adopted by companies. Another reason could simply
be the popularity of Amazon as an e-commerce marketplace in
di�erent countries and how long it has been doing business in
each country. For instance, we saw a very high similarity between
us, ca, and mx in terms of common items that exist in the three
markets, however, when it comes to product purchase data, we
see very little similarity. This indicates that even though Amazon
has a big in�uence on the e-commerce market in these countries,
users act di�erently. With the existence of obvious di�erences and
similarities, but at the same time having a mix of data-rich and
scarce markets, learning from auxiliary markets is not trivial and
requires careful development of market adaptation techniques.

4 PROBLEM STATEMENT
Assumewe are given a set of parallel markets as" = {M0, · · · ,MC }.
Let M0 be the base market with the set of items I0 = {�1, · · · , �=}.
For the base market, one could assume the market with long-lasting
existence o�ering the super-set of items and rich user-item interac-
tion data. For example, with our XMarket settings, the us market
can be thought of the base market and others such as de or in are
considered the parallel target markets. We assume that I; ⇢ I0 for
1  ;  C . Depending on the provided parallel markets," , the base
market could change or there might be no base market. With any
of these settings, a union set of items in all the parallel markets
could be de�ned as I0, satisfying our assumption.

For a given targetmarket,M; , let the set ofmarket’s users asU; =
{* 1

; , · · · ,*
I
;
}. Generally, a user can interact with di�erent markets,

but for simplicity, we assume that the set of users in each market
are mutually disjoint with any other parallel market. The problem
of market adaption is to use any of the parallel markets provided,
M0 2 " � {M; } as an auxiliary market to improve the quality
of items recommended to users of the target market, i.e. U; . It is
straightforward to use more than single auxiliary market. However,
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Figure 3: The general schema of our FOREC recommenda-
tion system. For a pair of markets, the middle part shows
the market-agnostic model that we pre-train, and then fork
and �ne-tune for each market shown in the left and right.
we focus on single auxiliary market and leave the other variations
as the future work. For our experiments, we either augment with
only usmarket or any of the parallel markets and report the results.
Automatically selecting the most suitable parallel auxiliary market
is another interesting problem that is out of the scope of this study
and we plan to explore on that direction as our future work.

5 FOREC: A CMR SYSTEM
Here, we explain our proposed CMR system, named FOREC. A gen-
eral schema of our model is presented in Fig. 3. We show an example
model architecture for a pair of markets, de and us. The training
phase for the FOREC system includes three ordered steps (i.e., pre-
training, forking, and �ne-tuning) that we explain in the following.
Note that FOREC is capable of working with any desired number of
target markets. However, for simplicity, we only experiment with
pairs of markets for our experimental evaluation.

5.1 Pre-Training: Market-Agnostic NMF
In this step, we aim to train a recommendation model that is market-
agnostic, in the sense that all the model parameters \ are shared
acrossmarkets and easily adaptable to every target market. This pro-
vides a generalized recommendation performance and a set of inter-
nal latent representations that are suitable for each individual mar-
ket. Having such internal representations maximize the reusability
of parameters translating into minimal e�ort on target market adap-
tation. To this end, we exploit the Model-Agnostic Meta-Learning
(MAML) framework [14] from the few-shot learning literature.

The general neural architecture we use for our pre-training step
is presented in middle part of Fig. 3. This architecture is �rst intro-
duced by He et al. [19] and widely used in the literature. Here, we
summarize the Neural Matrix Factorization (NMF) deep network be-
fore explaining our learning paradigm across markets. NMF model
fuses two sub-networks namely Generalized Matrix Factorization
(GMF) and Multi-Layer Perceptron (MLP). Both GMF and MLP sub-
networks are trained with the data individually and then fused

Algorithm 1: FOREC Training
Require:Market set:" = {M0,M1, · · · ,MC }
Require: Step size parameters: U , V ; Number of shots:  ;

1 Initialize NMF model parameters \
2 while not done do
3 for all M8 2 " do
4 adapt_batch = Sample  interactions from M8

5 Evaluate: r\LM8NMF(\ ) using  adapt interactions
6 Compute: \ 08 = \ � Ur\LM8NMF(\ )
7 eval_batch = Sample another  interactions from M8

8 end
9 \ = \ � Vr\

Õ
M8 2" LM8NMF(\ 08 ) using eval batches

10 end
11 for all M8 2 " do
12 NMF8 : Fork a M8 speci�c NMF model
13 Fine-tune NMF8 using only the training data of M8

14 end

using the NMF model architecture. For each user and item, a one-
hot vector is constructed and fed to the user and item embedding
layers of GMF and MLP networks, respectively. Note that GMF
and MLP sub-networks keep their own embeddings space (i.e., no
embedding sharing). Let the user and item latent vectors be pD and
q8 , respectively. The GMF network simply perform an element-wise
product between the vectors and uses a linear single-layer feed-
forward network to calculate the prediction, i.e. h) (pD � q8 ). Here,
h denotes the weights of the output layer. For individual training
of GMF, the prediction ~̂GMF is calculated using an activation func-
tion over the output layer’s output. This implements a generalized
matrix factorization network.

For the MLP sub-network, the user and item vectors are con-
catenated and fed to a deep feed-forward network for learning
the interactions between user and items, i.e. I1 = pD � q8 . Every
layer of the deep network, takes the output of the previous layer
z: and calculates the output, i.e. W)

: z:�1 + b: . W and b denote
the weight matrix and bias vector of each layer. Here, we use ReLU
as activation function and calculate ~̂MLP for individual training.
The NMF model simply initialize the network with individual pre-
trained parameters and for the output layer it concatenates the
output layer of GMF and MLP with a hyper-parameter determining
the trade-o�. For the parameter initialization of our pre-training
for market-agnostic NMF model, i.e. \ initialization, we simply con-
catenate the data from all target markets (a pair of markets in our
study) and train the model. For the loss function, L, we use the
binary cross entropy between the target and the model output.

Algorithm 1 lines 2-10 present our market-agnostic NMF pre-
training. The general framework for meta-learning considers a
probability distribution over tasks. Given the highly imbalanced
training data that each market o�ers and our �nal goal to learn a set
of generalized network parameters that works for each individual
market, we consider equal task sampling acrossmarkets. To this end,
we simply iterate over each market instead of sampling randomly
(line 3). During the meta-training with  -shot setting, for each
market the model is trained such that it can adapt itself with only  
samples from the target market. This pushes the model parameters
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such that they broadly become applicable to each individual market.
For this purpose, we sample two  sized batches of the user-item
interaction and perform adaptation and evaluation (lines 4 and 7).

Considering the NMF model with parameters \ , with the adap-
tation step on market M8 the model parameters become \ 08 . With
a single gradient update, \ 08 = \ � Ur\LM8NMF(\ ) in which U is
the NMF model’s learning rate (line 5-6). The meta-learning op-
timizes the NMF parameters across markets with the following
meta-objective.

min
\

’
M8 2"

LM8NMF(\ 08 )

The meta-optimization across markets are calculated using the
 evaluation user-item interactions on each market with a meta-
learning step size, V . This updates the original model parameters
such that few gradient steps can tune the parameters to a speci�c
target market (line 9).

5.2 Forking: Market-Speci�c Model
Construction

After obtaining the general internal representations using our
market-agnostic pre-training step, we conduct a series of oper-
ations for preparing a model that is market-speci�c for the desired
target market. We call this step “forking” mainly due to the sharing
of bottom parts and initialization of the middle parts of the market-
speci�c model with the pre-trained model. The general schema of
the forking operation is shown in Fig. 3 for our FOREC algorithm.
As it can be seen, from the market-agnostic NMF model trained
on us and de, we fork market-speci�c NMF models for each of the
models, shown on the right and left sides of the �gure.

Assuming the MLP part of the NMF model containing< layers,
and one additional layer for the NMF model, our objective with
forking is to maximize the reusability of the general parameters. To
this end, Raghu et al. [44] studies the similarity between an adapted
model’s layers and the general model and suggests that the main
body of the network barely changes and all the adaptation happens
in the head layers of the network. Inspired by this �nding, we freeze
layers up to layer : of the MLP network (1  :  <), the only
layer of the GMF network, as well as the user and item embeddings
learned with each of the sub-networks. Given that freezing some
part of the network limits the capacity of the network for learning
market-speci�c parameters, we add = new market-speci�c layers
on top of the original tower-style feed-forward network right after
the NMF layer to increase the network’s capacity. We call these new
layers as MarketHead layers. We believe that our forking operation
provides a network for balancing between the general market and
target market-speci�c parameters after the �nal �ne-tuning. The :
and = values are experimentally explored on a few pairs and �xed
for every market-speci�c forking in our experiments. The forking
operation for each target market is shown in line 12 of Algorithm
1. Further experimental details are given in Section 6.1.

5.3 Fine-Tuning: Final Training on the Target
Market

Over the forking step, we obtain a new market-speci�c NMF net-
work for the desired target market that the bottom part of the
network is frozen for any update for providing generalized internal

features, middle part initialized with the general market that could
easily adapted, and the �nal part that randomly initialized and needs
further training. One advantage of such a design is that it facilitates
the maintenance of the entire network with the availability of new
interactions on other market(s). Having the new market-speci�c
model forked and initialized as described, we simply �ne-tune the
model using only the data from the target market. We keep the loss
function the same for this part. However, one could easily change
the loss function with this step to better adapt the market needs in
the target market. The �ne-tuning operation for each target market
is shown in line 13 of Algorithm 1.

6 EXPERIMENTS
6.1 Experimental Setup
Dataset. We use XMarket dataset for our experimental evalua-
tions. We speci�cally focus on Elec. category across 8 markets
presented in Table 1. We prepare our data similar to single-market
experimental setup in the literature [2–4, 45, 56]. For the ratings,
we �ltered items and users that there exist less than �ve transac-
tions. We follow a long line of literature and use leave-one-out
evaluation [9, 17, 19, 20, 27, 28, 33].
Compared methods. In order to show the e�ectiveness of our
method, we employ the following models on each target market:

• GMF, MLP, NMF: The Generalized Matrix Factorization (GMF),
Multi-Layer Perceptron (MLP) and Neural Matrix Factorization
(NMF) models from [19] trained using only the target market.

• GMF++, MLP++, NMF++: The simplest way of leveraging the
cross-market data is to train the model on the interactions inside
both the source and target markets by sharing the item and user
representations. We equally sample from both markets in the
training phase—equal number of training interactions from each
market is used. We experimentally observed that this training
provides higher performance compared to simple concatenation
of both markets.

• DDTCDR: CDR and CMR have similarities as discussed in Sec. 2.
To test whether high performing CDR methods can be used to
e�ectively solve the CMR problem, we include the algorithm
proposed in [33], as one of the recent strong CDR methods in
our comparison. As the assumption with CDR is that the set of
users are shared across two domains, the original model con-
nects the user features between a pair of MLP networks using
an orthogonal transformation matrix. We adapt the model into
CMR by connecting the item features between two market’s MLP
networks. We performed a similar modi�cations for the CoNet’s
network structure proposed by Hu et al. [20] for the CDR prob-
lem. We only report DDTCDR due to its consistent superiority
compared to CoNet and the space limitations.

• MAML: Meta-learning is widely used in the recommendation
literature for variety of problem settings—see Section 2. Here, we
adapt the learning paradigm to the CMR by employing theMAML
framework providing model-agnostic solution for meta-learning.
Our MAML training phase is described in Algorithm 1 lines 1-10.
Here, after the training phase, we perform a single pass with  -
shots of sampled interactions from the validation split of the tar-
get market and fast adapt the pre-trained model parameters to the
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Table 3: Performance comparison of di�erent CMRmethods. Best performing method in each scenario is shown in bold fonts.
Signi�cance (Student’s t-test) with ? < 0.05 compared to MAML and NMF++ is indicated by ⇤ and †, respectively.

nDCG@10 HR@10

de jp in fr ca mx uk de jp in fr ca mx uk

Si
ng

le GMF 0.1109 0.2016 0.0324 0.4085 0.2960 0.5626 0.4685 0.4435 0.3033 0.0843 0.5246 0.4500 0.6452 0.5923
MLP 0.2506 0.3331 0.5921 0.3980 0.2522 0.5368 0.4662 0.4642 0.4324 0.6867 0.5424 0.4444 0.6636 0.5978
NMF 0.2486 0.3394 0.5970 0.3961 0.2917 0.5212 0.4853 0.4824 0.4447 0.6807 0.5451 0.4533 0.6648 0.6035

Be
st
-S
rc

GMF++ 0.2809 0.3253 0.5798 0.4074 0.2853 0.5598 0.4628 0.4605 0.4713 0.6807 0.5532 0.4411 0.6581 0.5945
MLP++ 0.2643 0.3268 0.5891 0.3991 0.2715 0.5557 0.4801 0.4753 0.4939 0.6807 0.5604 0.4389 0.6642 0.6053
NMF++ 0.3116 0.3890 0.6020 0.4165 0.3134 0.5511 0.5050 0.5083 0.5123 0.6988 0.5742 0.4692 0.6765 0.6232
DDTCDR 0.2553 0.2960 0.4994 0.3702 0.2958 0.5182 0.4192 0.4245 0.3873 0.5542 0.5228 0.4717 0.6028 0.5855
MAML 0.3402† 0.4258† 0.6076 0.4686† 0.3512† 0.5868† 0.5272† 0.5306† 0.5635† 0.6988 0.6046† 0.5058† 0.7066† 0.6478†

NMF-FOREC 0.3515† 0.3847 0.6249† 0.4387† 0.3454† 0.5886† 0.5102 0.5169 0.5082 0.7048 0.5748 0.4735 0.6832 0.6150
FOREC 0.3621⇤ 0.4195† 0.6378⇤ 0.4755† 0.3693† 0.6160⇤ 0.5252† 0.5480† 0.5717† 0.7169⇤ 0.6148† 0.5159† 0.7152† 0.6465†

Av
e-
Sr
c

GMF++ 0.2707 0.3036 0.4986 0.4005 0.2827 0.5360 0.4587 0.4537 0.4198 0.5813 0.5412 0.4385 0.6442 0.5882
MLP++ 0.2573 0.3350 0.5667 0.3970 0.2619 0.5352 0.4688 0.4657 0.4588 0.6649 0.5495 0.4339 0.6552 0.5963
NMF++ 0.2876 0.3533 0.5809 0.4123 0.3044 0.5387 0.4899 0.4890 0.4685 0.6687 0.5595 0.4608 0.6652 0.6096
DDTCDR 0.2155 0.2044 0.3095 0.3285 0.2551 0.4670 0.3923 0.3678 0.2945 0.4053 0.4560 0.4117 0.5675 0.5416
MAML 0.3336† 0.3756 0.5948 0.4555† 0.3463† 0.5793† 0.5174† 0.5111† 0.4941 0.6764 0.5959† 0.4939† 0.6878† 0.6335†

NMF-FOREC 0.3340† 0.3742 0.5974 0.4374† 0.3423† 0.5747† 0.5063 0.4968 0.4819 0.6713 0.5652 0.4673 0.6657 0.6079
FOREC 0.3523⇤ 0.4007⇤ 0.6140† 0.4637⇤ 0.3616⇤ 0.5989⇤ 0.5200† 0.5280⇤ 0.5187⇤ 0.6937† 0.5994† 0.5064⇤ 0.6981† 0.6364†

Fi
x-
Sr
c
(u
s)

GMF++ 0.2571 0.3123 0.5649 0.3844 0.2825 0.5162 0.4628 0.4498 0.4201 0.6687 0.5382 0.4398 0.6311 0.5945
MLP++ 0.2566 0.3227 0.5728 0.3935 0.2773 0.5291 0.4693 0.4498 0.4344 0.6747 0.5547 0.4347 0.6519 0.6026
NMF++ 0.3008 0.3446⇤ 0.6020 0.4208 0.3101 0.5509 0.4994 0.4857 0.4508 0.6988 0.5598 0.4610 0.6630 0.6151
DDTCDR 0.2376 0.2196 0.3763 0.3702 0.2958 0.3592 0.4192 0.3997 0.3299 0.4277 0.5228 0.4717 0.5433 0.5855
MAML 0.3295† 0.3154 0.5622 0.4403 0.3512† 0.5970† 0.5140 0.5065 0.4488 0.6506 0.5844† 0.5058† 0.7035† 0.6315†

NMF-FOREC 0.3265† 0.3620⇤ 0.6249⇤ 0.4417† 0.3394† 0.5671 0.5076 0.4879 0.4549 0.7048 0.5658 0.4635 0.6593 0.6109
FOREC 0.3306† 0.3563⇤ 0.6143⇤ 0.4485† 0.3693⇤ 0.6160† 0.5252† 0.5158† 0.4877⇤ 0.6928 0.5886† 0.5159† 0.7152† 0.6420†

target market. We observed no further improvements with more
number of passes on the adaptations. This baseline provides the
sole importance of our MAML adaptation to the CMR problem.

• NMF-FOREC: In order to show the impact of our MAML-based
pre-training with the FOREC, we pre-train our market-agnostic
model with only NMF++ method described above and perform
forking and �ne-tuning for each speci�c market. This baseline
provides evidences in two ways; (1) The importance of MAML
pre-training on the performance of the FOREC model, (2) The
sole impact of forking and �ne-tuning operations over a weak
pre-training of internal features.

Hyper-parameters. For GMF, MLP and NMF we follow [19] and
set all the network structure and the latent factor dimension as
suggested, i.e. [16, 64, 32, 16, 8] with 8 as embedding dimensions.
For the optimizer, we use Adam [30] and select the learning rate
and ;2-regularization coe�cient hyper-parameters using the val-
idation data of a subset of our markets. For the learning rate we
considered {0.1, 0.05, 0.01, 0.005, 0.001, 0.0001} and selected 0.01
for MLP and NMF and 0.005 for the GMF model. For regularization
we observed that 14�7 is the best among our consideration set. We
use 4 negative training samples for each user re-sampled with each
epoch. ReLU is used as the activation function. For DDTCDR we
use the same hyper-parameters provided in the original implemen-
tation of [33]. As the model uses a preset embeddings, we employ
the GMFmodel for the initialization. For MAML training, we set the
fast learning rate V = 0.1 selected from {0.5, 0.3, 0.1, 0.01, 0.001}

and the number of shots as 20 selected from {5, 20, 50, 100, 200}.
For our FOREC’s market-agnostic part we use the same architecture
as of NMF and employ the last three layers of the NMF network for
forking and freeze the remaining bottom layers as well as the em-
beddings. For the market head layers, we considered three di�erent
layer sizes; (a) no new layers, (b) two 16 layers, and (c) 3 layers with
[16, 32, 16], and evaluated experimentally using the validation data
on a subset of markets. We selected (c) as our model’s market head
layers for all experiments. In addition, we observed that setting
higher ;2-regularization with the �ne-tuning step helps the overall
performance, especially with lower resourced markets—we set it to
0.001 for all �ne-tuning steps.
Evaluation Metrics.We use Hit-Rate (HR) and nDCG as our eval-
uation metrics, commonly used in the literature. We report these
metrics for a cut-o� of 10. Similar to other works, we constructed
the ground truth using the buying behavior by considering an item
as relevant if the user gave a rating. In addition, we follow the liter-
ature and sample 99 negative items for each user in our evaluations.

6.2 Results and Discussion
We compare our FOREC model to several baseline techniques dis-
cussed in Sec. 6.1 in terms of recommendation performance. In
theory, each target market can be paired with each auxiliary source
market. However, for the 7 markets that we consider, all possible
pairings of source and target markets leads to 49 di�erent settings.
For better readability and due to space limitation, we report our
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Figure 4: Impact of choosing di�erent sourcemarkets on dif-
ferent target markets for di�erent models.

results in the following scenarios for every target market:

• Best-Src: Each of the parallel markets are once considered as
source and the model is evaluated using the nDCG@10 on the
validation set. For each method, the source market with the high-
est improvement on the validation set is selected. As such, for a
single target market, the best source market for di�erent CMR
methods may be di�erent.

• Ave-Src: In order to provide a rough indicator of the safer choice
of the CMR method on each target market along with an overall
insight on di�erent source selections, we report the average
performance of each model using di�erent source markets.

• Fix-Src: We report the results when a �xed base market is avail-
able (i.e. us market) and all CMR methods can only use that
market to improve the target market recommendation.

Table 3 summarizes the evaluation results with and without cross-
market data. All three aforementioned source selection scenarios
are reported respectively in the Table. The best performing method
for each target market and each source selection scenario is shown
by bold fonts.

We observe that FOREC is the winner in almost all target markets
and across all the source selection scenarios, except for jp and uk in
Best-Src scenario, and jp and in for Fix-Src. In addition, we observe
that even our simple baselines are able to utilize to some degree
the cross-market data provided and improve the target market’s
recommendation performance. This suggests the importance of
cross-market training, even with a �xed base market, for better
recommendation systems across di�erent local markets. It also
suggests the importance of the model and source market selection
for deployment purposes.

When the source market is selected by the validation perfor-
mance (i.e. Best-Src scenario), FOREC and MAML noticeably out-
perform other CMR methods. For uk, MAML is slightly better than
FOREC, though the di�erence is not substantial. For jp, MAML has
a higher nDCG, but FOREC is better in terms of HR, suggesting
that neither can be picked as the winner. For the other 5 markets,
FOREC outperforms MAML both in terms of nDCG and HR.

Looking at the results in Ave-Src scenario, FOREC outperforms
other powerful CMR methods on average, meaning that given a
source and target market, FOREC is a safer choice for CMR. This is
further illustrated in Table 4 where we report for each target market
the number of source markets for which each of FOREC or MAML
is the winner along with the relative percentage improvement of

Table 4: nDCGComparison of FOREC vs. MAMLwith di�er-
ent sourcemarkets. Values denote the percentage of relative
improvement of FOREC comparedwithMAML. Positive val-
ues indicate FOREC superiority.

de jp in fr ca mx uk avg

So
ur
ce

M
ar
ke
ts

de – -1.62 4.96 4.07 3.55 1.23 -0.74 1.64
jp 7.33 – 2.87 1.05 0.40 3.39 0.06 2.16
in 2.56 6.48 – 0.75 4.90 2.94 -0.40 2.46
fr 14.34 -1.47 1.42 – 7.67 1.98 0.05 3.43
ca 9.81 5.75 -0.08 0.32 – 3.44 0.62 2.84
mx 4.51 6.24 3.48 2.86 5.28 – 0.79 6.18
uk 3.87 24.51 2.39 3.99 4.86 3.62 – 6.18
us 0.32 12.97 9.26 1.85 5.16 3.18 2.17 4.99

avg 5.34 6.61 3.04 1.86 3.98 2.47 0.32 –

FOREC compared to MAML. As it can be seen, over all 49 possible
combinations of source-target pairs, only in 5 of them MAML is
slightly better than FOREC. As source markets, mx and uk are the
ones with the highest average improvement of FOREC over MAML,
while demarket is the one whereMAML performs closest to FOREC
and even surpasses it in two target markets.

Comparing the Fix-Src results, suggests that even though us is
not the best source market for all target markets in terms of perfor-
mance boost (see Best-Src scenario), comparing with the single mar-
ket results, it can be observed that us helps all of the tested target
markets and the CMR comes to its highest performance when used
with our FOREC model. In addition, we notice that NMF-FOREC
is performing better in two markets compared to FOREC. We hy-
pothesize that this might be due to the relative data size di�erences
between the us and each of these markets (see Table 2), performing
the pre-training using MAML provides a limited added value.

Comparing NMF-FOREC with FOREC, we observe that in most
of the target markets, FOREC performs better. Based on the obser-
vations from Table 3, in most of the cases, MAML performs better
than NMF++ and FOREC performs better than MAML. This shows
the signi�cance of the MAML-based pre-training as well as forking
and �ne-tuning, as proposed by our model.

Fig. 4 compares these four models more deeply. In this �gure,
the nDCG@10 improvement of these CMR models over the NMF
on single market are shown for di�erent target markets. For each
method in each target market, the distribution of nDCG@10 im-
provements based on di�erent source markets is given as a box plot.
This �gure provides a better illustration of the trend between these
four models described earlier.

Finally, we observe that the adopted DDTCDR, as one of the
state-of-the-art CDR methods, does not perform well for CMR. In
order to adopt a CDR method to CMR scenario, as described before,
the users and items should be interchanged: the shared users in
CDR are analogous to the shared items in CMR. This change of
perspective looks natural at �rst sight, but it introduces some issues.
Here we discuss the issue. In the item recommendation problem,
a number of past interactions of a user with items are used to
predict her future interactions. This means that the evaluation is
based on the accuracy of the predicted items for users. In CDR,
the users are shared across domains and the interacted items from
the source domain add to the per-user information of the target
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(a) User group. (b) Data size.

Figure 5: Performance comparison of FORECon (a) di�erent
user groups; and (b) di�erent training data size.

domain. Di�erently, in CMR, the items are shared across markets
and the users are separate. Changing the perspective of users/items
during training but having a �xed evaluation based on the per-user
predictions is the issue of naïvely adopting a CDR to CMR. An
interesting future direction would be to analyze the impact of such
adoption for user recommendation in CMR scenarios.

6.3 Impact of Cross-Market Training on
Di�erent Users

Here we study the impact of di�erent cross-market training ap-
proaches on user groups in terms of their training data size. Fol-
lowing the work of Liu et al. [35] we split the users based on the
interactions into �ve groups. The users with the least number of
interactions are named cold (average of 5 interactions), and the ones
with the highest number of interactions are called warm (average
of 13.3 interactions). We create �ve equally-sized user splits and
report the average nDCG@10 for each group in Fig. 5a. This �gure
contains the performance of four models on these �ve user groups
in the ca market: single market NMF, NMF++, MAML and FOREC.
Here, we used de as the source market.7 We observe that MAML
and FOREC almost uniformly improve the performance over the
single market NMF in all �ve user groups. Comparing FOREC with
MAML, again we see a consistent improvement in all �ve user
groups with a slightly bigger gap toward the cold user group. This
observation, together with other similar observations on our tests
over other source-target pairs, provide experimental evidence that
FOREC is suitable both for cold- and warm-start situations in the
target market. NMF++, on the other hand, only helps the cold user
groups, as can be seen in the �gure.

6.4 Impact of the Target Market Data Size
In order to study the impact of target training data size, for a given
market pair, we gradually decrease the number of training interac-
tions for each user. Starting from the full target market user-item
interactions, each time we halve the training data for the target
market until only 10% of the target market’s training interactions
remains for each user. We train four of our models (NMF, NMF++,
MAML, FOREC) on each of these settings and test on the target
market. Fig. 5b presents the resulting nDCG@10 performance on
ca with uk as the source market—similar observations made for a
many pairs. As it can be seen, among the cross-market methods

7We repeated the experiments with di�erent source and target markets and got similar
results. Here we only show one case.

we see that FOREC and MAML are performing similarly especially
when the target market’s size is extremely small. On the extremely
small target market size (10% of the data), we see that single mar-
ket NMF model as well as NMF++ are performing better. As more
data becomes available, a signi�cant boost among cross-market
methods are observed, especially with FOREC—as opposed to NMF
with lazy reaction to the new data availability. With further data
availability, we see the full superiority of MAML as well as FOREC.
This analysis suggests that some minimum amount of training data
in the target market is essential for the cross-market models that we
examined in order to be able tomake use of the auxiliary sourcemar-
ket. We hypothesize that when the target market provides limited
amount of training data the pre-training through the MAML ap-
proach shifts parameters more toward the source market compared
to the NMF++ training approach. However, the general observation
from this analysis could be that FOREC and MAML are relatively
resilient to the amount of the target training data. We note that this
requires further analysis which is out of the scope of our study.

7 CONCLUSION & FUTUREWORK
We studied the problem of recommending relevant products to
users in relatively resource-scarce markets by leveraging data from
similar or richer-in-resource auxiliary markets. To this aim, we in-
troduced a large-scale real-life dataset, named as XMarket, provid-
ing product information and reviews on 18 Amazon marketplaces
featuring 52.5million user-item interactions. We hypothesized and
showed through extensive experiments on 7 target markets that
data from one market can actually be used to improve the per-
formance in another. Our model, named as FOREC, demonstrates
robust e�ectiveness, consistently improving the performance on
target markets compared to competitive baselines selected for our
analysis. In particular, FOREC improves on average 24% and up to
50% in terms of nDCG@10, compared to the NMF baseline.

Our analysis and experiments suggest speci�c future directions
in this research area. We show that models that are designed for
CDR are not necessarily suitable for the market adaptation problem
setting. One interesting extension of our study could be designing
models that are domain and market agnostic in the sense that they
can consume the data across di�erent markets and domains and
leverage that for the improved recommendation on a target mar-
ket’s speci�c domain. In addition, we believe that data �ltering or
selection across markets could potentially be helpful for the mod-
els we discussed in our study. Moreover, using data augmentation
techniques to generate synthetic ratings for target markets [8, 51]
could be a potential solution for the extreme low-resource markets,
i.e. cold-start markets. We believe that many potentially interesting
problems are yet to be explored in the CMR area.
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